搜索
首页科技周边人工智能OpenAI编程语言加速Bert推理12倍,引擎备受关注

一行代码的威力到底有多大?今天我们要介绍的这个 Kernl 库,用户只需一行代码,在 GPU 上就能以快几倍的速度运行 Pytorch transformer 模型,从而极大的加快了模型的推理速度。​

具体而言,有了 Kernl 的加持,Bert 的推理速度比 Hugging Face 基线快了 12 倍。这一成果主要得益于 Kernl 用新的 OpenAI 编程语言 Triton 和 TorchDynamo 编写了定制的 GPU 内核。项目作者来自 Lefebvre Sarrut。

一行代码12倍加速Bert推理,OpenAI编程语言加持的引擎火了

GitHub 地址:https://github.com/ELS-RD/kernl/

以下是 Kernl 与其他推理引擎的比较,横坐标中括号里的数字分别表示 batch size、序列长度,纵坐标为推理加速情况。

一行代码12倍加速Bert推理,OpenAI编程语言加持的引擎火了

基准测试在 3090 RTX GPU 运行,以及 12 核 Intel CPU。

由上述结果可得,在长序列输入这一块,Kernl 可以说是最快的推理引擎(上图中的右半部分),在短输入序列上接近英伟达的 TensorRT(上图中的左半部分)。除此以外,Kernl 内核代码非常简短,易于理解和修改。该项目甚至添加了 Triton 调试器和工具 (基于 Fx) 来简化内核替换,因此不需要修改 PyTorch 模型源代码。​

项目作者 Michaël Benesty 对这一研究进行了总结,他们发布的 Kernl 是一个用于加速 transformer 推理的库,速度非常快,有时会到达 SOTA 性能,可破解以匹配大多数 transformer 架构。

他们还在 T5 上做了测试,速度提高 6 倍,Benesty 表示这仅仅是个开始。

为什么创建 Kernl?​

在 Lefebvre Sarrut,项目作者在生产中运行几个 transformers 模型,其中一些对延迟敏感,主要是搜索和 recsys。他们还在使用 OnnxRuntime 和 TensorRT,甚至创建了 transformer-deploy OSS 库来与社区分享知识。​

最近,作者在测试生成语言,并努力加速它们。然而事实证明,使用传统工具做到这些非常困难。在他们看来,Onnx 是另一种有趣的格式,它是一种针对机器学习所设计的开放式文件格式,用于存储训练好的模型,具有广泛的硬件支持。

但是,当他们处理新的 LLM 架构时,Onnx 生态系统(主要是推理引擎)存在以下几种限制:​

  • 没有控制流的模型导出到 Onnx 很简单,这是因为可以依赖跟踪。但是动态行为更难获得;
  • 与 PyTorch 不同,ONNX Runtime/TensorRT 还没有原生支持实现张量并行的多 GPU 任务;
  • TensorRT 无法为具有相同配置文件的 transformer 模型管理 2 个动态轴。但由于通常希望能够提供不同长度的输入,因此需要每个批大小构建 1 个模型;
  • 非常大的模型很常见,但 Onnx(作为 protobuff 文件)在文件大小方面有一些限制,需要将权重存储在模型之外来解决问题。​

一个非常烦人的事实是新模型永远不会被加速,你需要等着其他人来为此编写自定义 CUDA 内核。现有解决方案并不是不好,OnnxRuntime 的一大优点是它的多硬件支持,TensorRT 则以非常快速著称。

所以,项目作者想要在 Python/PyTorch 上有像 TensorRT 一样快的优化器,这也是他们创建 Kernl 的原因。

如何做到?​

内存带宽通常是深度学习的瓶颈,为了加速推理,减少内存访问往往是一个很好的策略。在短输入序列上,瓶颈通常与 CPU 开销有关,它必须被消除。项目作者主要利用了以下 3 项技术:​

首先是 OpenAI Triton,它是一种编写 CUDA 等 GPU 内核的语言,不要将它与 Nvidia Triton 推理服务器混淆,它的效率更高。几个操作的融合实现了改进,使得他们不在 GPU 内存中保留中间结果的情况下链接计算。作者使用它重写注意力(由 Flash Attention 替换)、线性层和激活以及 Layernorm/Rmsnorm。​

其次是 CUDA 图。在预热(warmup)步骤中,它将保存每个启动的内核及它们的参数。然后,项目作者重建了整个推理过程。​

最后是 TorchDynamo,这个由 Meta 提出的原型机帮助项目作者应对动态行为。在预热步骤中,它会跟踪模型并提供一个 Fx 图(静态计算图)。他们使用自己的内核替换了 Fx 图的一些操作,并在 Python 中重新编译。

未来,项目路线图将涵盖更快的预热、ragged 推理(padding 中没有损失计算)、训练支持(长序列支持)、多 GPU 支持(多并行化模式)、量化(PTQ)、新 batch 的 Cutlass 内核测试以及提升硬件支持等。

更多详细内容请参阅原项目。

以上是OpenAI编程语言加速Bert推理12倍,引擎备受关注的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
微软工作趋势指数2025显示工作场所容量应变微软工作趋势指数2025显示工作场所容量应变Apr 24, 2025 am 11:19 AM

由于AI的快速整合而加剧了工作场所的迅速危机危机,要求战略转变以外的增量调整。 WTI的调查结果强调了这一点:68%的员工在工作量上挣扎,导致BUR

AI可以理解吗?中国房间的论点说不,但是对吗?AI可以理解吗?中国房间的论点说不,但是对吗?Apr 24, 2025 am 11:18 AM

约翰·塞尔(John Searle)的中国房间论点:对AI理解的挑战 Searle的思想实验直接质疑人工智能是否可以真正理解语言或具有真正意识。 想象一个人,对下巴一无所知

中国的'智能” AI助手回应微软召回的隐私缺陷中国的'智能” AI助手回应微软召回的隐私缺陷Apr 24, 2025 am 11:17 AM

与西方同行相比,中国的科技巨头在AI开发方面的课程不同。 他们不专注于技术基准和API集成,而是优先考虑“屏幕感知” AI助手 - AI T

Docker将熟悉的容器工作流程带到AI型号和MCP工具Docker将熟悉的容器工作流程带到AI型号和MCP工具Apr 24, 2025 am 11:16 AM

MCP:赋能AI系统访问外部工具 模型上下文协议(MCP)让AI应用能够通过标准化接口与外部工具和数据源交互。由Anthropic开发并得到主要AI提供商的支持,MCP允许语言模型和智能体发现可用工具并使用合适的参数调用它们。然而,实施MCP服务器存在一些挑战,包括环境冲突、安全漏洞以及跨平台行为不一致。 Forbes文章《Anthropic的模型上下文协议是AI智能体发展的一大步》作者:Janakiram MSVDocker通过容器化解决了这些问题。基于Docker Hub基础设施构建的Doc

使用6种AI街头智能策略来建立一家十亿美元的创业使用6种AI街头智能策略来建立一家十亿美元的创业Apr 24, 2025 am 11:15 AM

有远见的企业家采用的六种策略,他们利用尖端技术和精明的商业敏锐度来创造高利润的可扩展公司,同时保持控制权。本指南是针对有抱负的企业家的,旨在建立一个

Google照片更新解锁了您所有图片的惊人Ultra HDRGoogle照片更新解锁了您所有图片的惊人Ultra HDRApr 24, 2025 am 11:14 AM

Google Photos的新型Ultra HDR工具:改变图像增强的游戏规则 Google Photos推出了一个功能强大的Ultra HDR转换工具,将标准照片转换为充满活力的高动态范围图像。这种增强功能受益于摄影师

Descope建立AI代理集成的身份验证框架Descope建立AI代理集成的身份验证框架Apr 24, 2025 am 11:13 AM

技术架构解决了新兴的身份验证挑战 代理身份集线器解决了许多组织仅在开始AI代理实施后发现的问题,即传统身份验证方法不是为机器设计的

Google Cloud Next 2025以及现代工作的未来Google Cloud Next 2025以及现代工作的未来Apr 24, 2025 am 11:12 AM

(注意:Google是我公司的咨询客户,Moor Insights&Strateging。) AI:从实验到企业基金会 Google Cloud Next 2025展示了AI从实验功能到企业技术的核心组成部分的演变,

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境