首页  >  文章  >  后端开发  >  Python中如何计算函数的执行时间?

Python中如何计算函数的执行时间?

WBOY
WBOY转载
2023-04-22 09:43:072355浏览

python开发,有时需要做性能分析及性能优化,这时就需要记录一些耗时函数执行时间问题,然后针对函数逻辑进行优化。

在python3中一般都有哪些方法呢。

1、使用time.time()

这种方法较简单,但如果想更精确的计算函数的执行时间,会产生精度缺失,没办法统计时间极短的函数耗时。

<pre class="brush:php;toolbar:false">import time    def func():  time.sleep(1)    t = time.time()  func()  print(f'耗时:{time.time() - t:.4f}s')    耗时:1.0050s</pre>

2、使用time.perf_counter()

perf_counter是在python3.3新添加的,返回性能计数器的值,返回值是浮点型,统计结果包括睡眠的时间,单个函数的返回值无意义,只有多次运行取差值的结果才是有效的函数执行时间。

<pre class="brush:php;toolbar:false">import time  def func():  print('hello world')  t = time.perf_counter()  func()  print(f'耗时:{time.perf_counter() - t:.8f}s')  hello world  耗时:0.00051790s</pre>

3、使用timeit.timeit ()

<pre class="brush:php;toolbar:false">timeit()函数有5个参数:  stmt 参数是需要执行的语句,默认为 pass  setup 参数是用来执行初始化代码或构建环境的语句,默认为 pass  timer 是计时器,默认是 perf_counter()  number 是执行次数,默认为一百万  globals 用来指定要运行代码的命名空间,默认为 None   import timeit  def func():  print('hello world')  print(f'耗时: {timeit.timeit(stmt=func, number=1)}')  hello world  耗时: 0.0007705999999999824</pre>

4、使用装饰器统计

在实际项目代码中,可以通过装饰器方便的统计函数运行耗时。使用装饰器来统计函数执行耗时的好处是对函数的入侵性小,易于编写和修改。

装饰器装饰函数的方案只适用于统计函数的运行耗时,如果有代码块耗时统计的需求就不能用了,这种情况下可以使用 with 语句自动管理上下文。

(1)同步函数的统计

<pre class="brush:php;toolbar:false">import time   def coast_time(func):  def fun(*args, **kwargs):  t = time.perf_counter()  result = func(*args, **kwargs)  print(f'函数:{func.__name__} 耗时:{time.perf_counter() - t:.8f} s')  return result  return fun  @coast_time  def test():  print('hello world')  if __name__ == '__main__':  test()</pre>

(2)异步函数的统计

<pre class="brush:php;toolbar:false">import asyncio  import time  from asyncio.coroutines import iscoroutinefunction  def coast_time(func):  def fun(*args, **kwargs):  t = time.perf_counter()  result = func(*args, **kwargs)  print(f'函数:{func.__name__} 耗时:{time.perf_counter() - t:.8f} s')  return result  async def func_async(*args, **kwargs):  t = time.perf_counter()  result = await func(*args, **kwargs)  print(f'函数:{func.__name__} 耗时:{time.perf_counter() - t:.8f} s')  return result  if iscoroutinefunction(func):  return func_async  else:  return fun  @coast_time  def test():  print('hello test')  time.sleep(1)  @coast_time  async def test_async():  print('hello test_async')  await asyncio.sleep(1)  if __name__ == '__main__':  test()  asyncio.get_event_loop().run_until_complete(test_async())   hello test  函数:test 耗时:1.00230700 s  hello test_async  函数:test_async 耗时:1.00572550 s</pre>

5、with语句统计

通过实现 enter 和 exit 函数可以在进入和退出上下文时进行一些自定义动作,例如连接或断开数据库、打开或 关闭文件、记录开始或结束时间等,例如:我们用来统计函数块的执行时间。

with语句不仅可以统计代码块的执行时间,也可以统计函数的执行时间,还可以统计多个函数的执行时间之和,相比装饰器来说对代码的入侵性比较大,不易于修改,好处是使用起来比较灵活,不用写过多的重复代码。

<pre class="brush:php;toolbar:false">import asyncio  import time   class CoastTime(object):  def __init__(self):  self.t = 0  def __enter__(self):  self.t = time.perf_counter()  return self  def __exit__(self, exc_type, exc_val, exc_tb):  print(f'耗时:{time.perf_counter() - self.t:.8f} s')  def test():  print('hello test')  with CoastTime():  time.sleep(1)  async def test_async():  print('hello test_async')  with CoastTime():  await asyncio.sleep(1)  if __name__ == '__main__':  test()  asyncio.get_event_loop().run_until_complete(test_async()) hello test 耗时:1.00723310 s hello test_async 耗时:1.00366820 s</pre>

以上是Python中如何计算函数的执行时间?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文转载于:yisu.com。如有侵权,请联系admin@php.cn删除