1、删除值为val的所有节点
删除链表中等于给定值val的所有节点。【OJ链接】
定义两个指针prev、cur,cur指向头节点的下一个节点,prev始终指向cur的前一个结点(方便删除节点)。通过cur指针去遍历链表,和val值比较,相同就删除这个节点。最后再来比较头节点。
/** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode() {} * ListNode(int val) { this.val = val; } * ListNode(int val, ListNode next) { this.val = val; this.next = next; } * } */ class Solution { public ListNode removeElements(ListNode head, int val) { if(head==null){ return null; } ListNode prev=head; ListNode cur=head.next; while(cur!=null){ if(cur.val==val){ prev.next=cur.next; cur=cur.next; }else{ prev=cur; cur=cur.next; } } if(head.val==val){ head=head.next; } return head; } }
2、反转链表
反转一个链表。【OJ链接】
在遍历链表时,将当前节点的 指针改为指向前一个节点。由于节点没有引用其前一个节点,因此必须事先存储其前一个节点。在更改引用之前,还需要存储后一个节点。最后返回新的头引用。
/** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode() {} * ListNode(int val) { this.val = val; } * ListNode(int val, ListNode next) { this.val = val; this.next = next; } * } */ class Solution { public ListNode reverseList(ListNode head) { if(head==null){ return null; } ListNode cur=head.next; head.next=null; while(cur!=null){ ListNode curNext=cur.next; cur.next=head; head=cur; cur=curNext; } return head; } }
3、返回链表中间节点
给定一个带有头节点的非空单链表,返回链表的中间节点。如果有两个中间节点,则返回第二个中间节点。【OJ链接】
我们可以定义两个快慢指针(fast、slow),都指向头节点。快指针每次走两步,慢指针每次走一步。链表有偶数个节点时,fast=null时slow为中间节点;链表有奇数个节点时,fast.next=null时slow为中间节点。
/** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode() {} * ListNode(int val) { this.val = val; } * ListNode(int val, ListNode next) { this.val = val; this.next = next; } * } */ class Solution { public ListNode middleNode(ListNode head) { if(head==null){ return null; } ListNode slow=head; ListNode fast=head; while(fast!=null&&fast.next!=null){ fast=fast.next.next; slow=slow.next; } return slow; } }
4、返回链表第K个节点
输入一个链表,返回该链表中倒数第K个节点。【OJ链接】
这个题和找中间节点的思路相似。定义两个指针(fast、slow)。在K合理的前提下,我们可以让快指针先走K-1步,然后快慢指针同时向后走,当fast到达链表结尾时,slow就指向倒数第K个节点。
/* public class ListNode { int val; ListNode next = null; ListNode(int val) { this.val = val; } }*/ public class Solution { public ListNode FindKthToTail(ListNode head,int k) { if(k<=0||head==null){ return null; } ListNode fast=head; ListNode slow=head; while(k-1>0){ if(fast.next==null){ return null; } fast=fast.next; //先让快节点走k-1步 k--; } while(fast.next!=null){ fast=fast.next; slow=slow.next; } return slow; } }
5、合并有序链表
将两个有序链表合并为一个有序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。【OJ链接】
解这个题,需要定义虚假节点来充当新链表的头节点。通过两个链表的头节点去遍历两个节点,去比较两个链表对应节点的值,将值小的节点连接到新链表的后面,知道两个链表遍历完,当其中一个链表为空时,直接将另一个链表连接到新链表后面即可。
class Solution { public ListNode mergeTwoLists(ListNode list1, ListNode list2) { if(list1==null){ return list2; } if(list2==null){ return list1; } //创建虚拟节点,充当新链表的头节点,值不代表任何意义 ListNode node=new ListNode(-1); ListNode cur=node; while(list1!=null&&list2!=null){ if(list1.val<list2.val){ cur.next=list1; list1=list1.next; }else{ cur.next=list2; list2=list2.next; } cur=cur.next; } if(list1==null){ cur.next=list2; }else{ cur.next=list1; } return node.next; } }
6、按值分割链表
将一个链表按照给定值X划分为两部分,所有小于X的节点排在大于或等于X的节点之前。不改变节点原来的顺序。【OJ链接】
首先我们需要定义四个指针(bs、be、as、ae)分别表示小于X部分链表的头节点和尾节点、大于X部分链表的头节点和尾节点。通过头节点遍历链表,将链表分为两部分。最后将两个链表连接起来即可。需要特别注意,当小于X部分链表不为空时,我们需要手动将ae.next置为空。
/* public class ListNode { int val; ListNode next = null; ListNode(int val) { this.val = val; } }*/ public class Partition { public ListNode partition(ListNode pHead, int x) { if(pHead==null){ return null; } ListNode bs=null; ListNode be=null; ListNode as=null; ListNode ae=null; ListNode cur=pHead; while(cur!=null){ if(cur.val<x){ if(bs==null){ bs=cur; be=cur; }else{ be.next=cur; be=cur; } }else{ if(as==null){ as=cur; ae=cur; }else{ ae.next=cur; ae=cur; } } cur=cur.next; } if(bs==null){ return as; //如果小于X部分为空,则直接返回大于X部分即可。此时ae.next一定为null } be.next=as;//否则连接小于X和大于X部分 if(as!=null){ ae.next=null; //当小于X部分不为空时,ae.next可能不为null,需要手动置为null } return bs; } }
7、判读回文链表
判断链表是不是回文链表。【OJ链接】
首先我们需要找到链表的中间节点,然后将后半段链表反转。最后通过两边来逐步比较即可。特别注意,当链表结点个数为偶数时,因为中间节点的缘故,两边遍历时,无法相遇,需要特殊处理。
/* public class ListNode { int val; ListNode next = null; ListNode(int val) { this.val = val; } }*/ public class PalindromeList { public boolean chkPalindrome(ListNode A) { if(A==null){ return false; } if(A.next==null){ return true; } //求链表的中间节点 ListNode slow=A; ListNode fast=A; while(fast!=null&&fast.next!=null){ fast=fast.next.next; slow=slow.next; } //反转后半段链表 ListNode cur=slow.next; while(cur!=null){ ListNode curNext=cur.next; cur.next=slow; slow=cur; cur=curNext; } //判断回文链表 while(slow!=A){ if(slow.val!=A.val){ return false; } if(A.next==slow){ return true; } slow=slow.next; A=A.next; } return true; } }
8、找两个链表的公共节点
输入两个链表,输出两个链表的第一个公共节点。没有返回NULL。【OJ链接】
两个链表相交呈现Y字型。那么两个链表长度的差肯定是未相交前两个链表节点的差。我们需要求出两个链表的长度。定义两个指针(pl、ps),让pl指向长的链表,ps指向短的链表。求出两个链表的长度差len。让pl想走len步。这样两个链表的剩余长度就相同。此时两个指针同时遍历连个链表,如果其指向一致,则两个链表相交,否则,两个链表不相交。
/** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode(int x) { * val = x; * next = null; * } * } */ public class Solution { //求链表长度 public int len(ListNode head){ int len=0; while(head!=null){ head=head.next; len++; } return len; } public ListNode getIntersectionNode(ListNode headA, ListNode headB) { if(headA==null||headB==null){ return null; } ListNode pl=headA; ListNode ps=headB; int lenA=len(headA); int lenB=len(headB); int len=lenA-lenB; if(len<0){ //pl指向长的链表,ps指向短的链表 pl=headB; ps=headA; len=-len; } while(len--!=0){ pl=pl.next; } while(pl!=null){ if(pl==ps){ return pl; } pl=pl.next; ps=ps.next; } return null; } }
9、判断成环链表
判断链表中是否有环。【OJ链接】
还是快慢指针。慢指针一次走一步,快指针一次走两步。两个指针从链表起始位置开始运行。如果链表带环则一定会在环中相遇,否则快指针率先走到链表的末尾。
/** * Definition for singly-linked list. * class ListNode { * int val; * ListNode next; * ListNode(int x) { * val = x; * next = null; * } * } */ public class Solution { public boolean hasCycle(ListNode head) { if(head==null||head.next==null){ return false;//链表为空或者只有一个节点时,没有环 } ListNode slow=head; ListNode fast=head; while(fast!=null&&fast.next!=null){ fast=fast.next.next; slow=slow.next; if(fast==slow){ return true; //如果快慢节点可以相遇,表示链表有环 } } return false; } }
10、返回成环链表的入口
给定一个链表,判断链表是否有环并返回入环的节点。如果没有环,返回NULL。【OJ链接】
让一个指针从链表的其实在位置开始遍历,同时另一个指针从上题中两只真相与的位置开始走,两个指针再次相遇时的位置肯定为环的入口
/** * Definition for singly-linked list. * class ListNode { * int val; * ListNode next; * ListNode(int x) { * val = x; * next = null; * } * } */ public class Solution { //判断链表是否有环,并返回第一次快慢节点相交的位置 public ListNode hasCycle(ListNode head){ if(head==null||head.next==null){ return null; } ListNode slow=head; ListNode fast=head; while(fast!=null&&fast.next!=null){ slow=slow.next; fast=fast.next.next; if(slow==fast){ return slow; } } return null; } //当返回的结点与头节点再次相交时,为环的入口 public ListNode detectCycle(ListNode head) { ListNode node=hasCycle(head); if(node==null){ return null; }else{ while(head!=node){ head=head.next; node=node.next; } } return head; } }
以上是Java链表实例分析的详细内容。更多信息请关注PHP中文网其他相关文章!

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于结构化数据处理开源库SPL的相关问题,下面就一起来看一下java下理想的结构化数据处理类库,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于PriorityQueue优先级队列的相关知识,Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于java锁的相关问题,包括了独占锁、悲观锁、乐观锁、共享锁等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于多线程的相关问题,包括了线程安装、线程加锁与线程不安全的原因、线程安全的标准类等等内容,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于枚举的相关问题,包括了枚举的基本操作、集合类对枚举的支持等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Java的相关知识,其中主要介绍了关于关键字中this和super的相关问题,以及他们的一些区别,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于平衡二叉树(AVL树)的相关知识,AVL树本质上是带了平衡功能的二叉查找树,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Java的相关知识,其中主要整理了Stream流的概念和使用的相关问题,包括了Stream流的概念、Stream流的获取、Stream流的常用方法等等内容,下面一起来看一下,希望对大家有帮助。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

禅工作室 13.0.1
功能强大的PHP集成开发环境

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具