背景
其实一开始用的是pymysql,但是发现维护比较麻烦,还存在代码注入的风险,所以就干脆直接用ORM框架。
ORM即Object Relational Mapper,可以简单理解为数据库表和Python类之间的映射,通过操作Python类,可以间接操作数据库。
Python的ORM框架比较出名的是SQLAlchemy和Peewee,这里不做比较,只是单纯讲解个人对SQLAlchemy的一些使用,希望能给各位朋友带来帮助。
- sqlalchemy版本: 1.3.15
- pymysql版本: 0.9.3
- mysql版本: 5.7
初始化工作
一般使用ORM框架,都会有一些初始化工作,比如数据库连接,定义基础映射等。
以MySQL为例,创建数据库连接只需要传入DSN字符串即可。其中echo表示是否输出对应的sql语句,对调试比较有帮助。
from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://$user:$password@$host:$port/$db?charset=utf8mb4', echo=True)
个人设计
对于我个人而言,引进ORM框架时,我的项目会参考MVC模式做以下设计。其中model存储的是一些数据库模型,即数据库表映射的Python类;model_op存储的是每个模型对应的操作,即增删查改;调用方(如main.py)执行数据库操作时,只需要调用model_op层,并不用关心model层,从而实现解耦。
├── main.py ├── model │ ├── __init__.py │ ├── base_model.py │ ├── ddl.sql │ └── py_orm_model.py └── model_op ├── __init__.py └── py_orm_model_op.py
映射声明(Model介绍)
举个栗子,如果我们有这样一张测试表。
create table py_orm ( `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '唯一id', `name` varchar(255) NOT NULL DEFAULT '' COMMENT '名称', `attr` JSON NOT NULL COMMENT '属性', `ct` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间', `ut` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON update CURRENT_TIMESTAMP COMMENT '更新时间', PRIMARY KEY(`id`) )ENGINE=InnoDB COMMENT '测试表';
在ORM框架中,映射的结果就是下文这个Python类。
# py_orm_model.py from .base_model import Base from sqlalchemy import Column, Integer, String, TIMESTAMP, text, JSON class PyOrmModel(Base): __tablename__ = 'py_orm' id = Column(Integer, autoincrement=True, primary_key=True, comment='唯一id') name = Column(String(255), nullable=False, default='', comment='名称') attr = Column(JSON, nullable=False, comment='属性') ct = Column(TIMESTAMP, nullable=False, server_default=text('CURRENT_TIMESTAMP'), comment='创建时间') ut = Column(TIMESTAMP, nullable=False, server_default=text('CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP'), comment='更新时间')
首先,我们可以看到PyOrmModel继承了Base类,该类是sqlalchemy提供的一个基类,会对我们声明的Python类做一些检查,我将其放在base_model中。
# base_model.py # 一般base_model做的都是一些初始化的工作 from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() engine = create_engine("mysql+pymysql://root:123456@127.0.0.1:33306/orm_test?charset=utf8mb4", echo=False)
其次,每个Python类都必须包含__tablename__属性,不然无法找到对应的表。
第三,关于数据表的创建有两种方式,第一种当然是手动在MySQL中创建,只要你的Python类定义没有问题,就可以正常操作;第二种是通过orm框架创建,比如下面。
# main.py # 注意这里的导入路径,Base创建表时会寻找继承它的子类,如果路径不对,则无法创建成功 from sqlachlemy_lab import Base, engine if __name__ == '__main__': Base.metadata.create_all(engine)
创建效果:
... 2020-04-04 10:12:53,974 INFO sqlalchemy.engine.base.Engine CREATE TABLE py_orm ( id INTEGER NOT NULL AUTO_INCREMENT, name VARCHAR(255) NOT NULL DEFAULT '' COMMENT '名称', attr JSON NOT NULL COMMENT '属性', ct TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP, ut TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP, PRIMARY KEY (id) )
第四,关于字段属性:
1.primary_key和autoincrement比较好理解,就是MySQL的主键和递增属性。
2.如果是int类型,不需要指定长度,而如果是varchar类型,则必须指定。
3.nullable对应的就是MySQL中的NULL 和 NOT NULL
4.关于default和server_default: default代表的是ORM框架层面的默认值,即插入的时候如果该字段未赋值,则会使用我们定义的默认值;server_default代表的是数据库层面的默认值,即DDL语句中的default关键字。
Session介绍
在SQLAlchemy的文档中提到,数据库的增删查改是通过session来执行的。
>>> from sqlalchemy.orm import sessionmaker >>> Session = sessionmaker(bind=engine) >>> session = Session() >>> orm = PyOrmModel(id=1, name='test', attr={}) >>> session.add(orm) >>> session.commit() >>> session.close()
如上,我们可以看到,对于每一次操作,我们都需要对session进行获取,提交和释放。这样未免过于冗余和麻烦,所以我们一般会进行一层封装。
1.采用上下文管理器的方式,处理session的异常回滚和关闭,这部分与所参考的文章是几乎一致的。
# base_model.py from contextlib import contextmanager from sqlalchemy.orm import sessionmaker, scoped_session def _get_session(): """获取session""" return scoped_session(sessionmaker(bind=engine, expire_on_commit=False))() # 在这里对session进行统一管理,包括获取,提交,回滚和关闭 @contextmanager def db_session(commit=True): session = _get_session() try: yield session if commit: session.commit() except Exception as e: session.rollback() raise e finally: if session: session.close()
2.在PyOrmModel中增加两个方法,用于model和dict之间的转换。
class PyOrmModel(Base): ... @staticmethod def fields(): return ['id', 'name', 'attr'] @staticmethod def to_json(model): fields = PyOrmModel.fields() json_data = {} for field in fields: json_data[field] = model.__getattribute__(field) return json_data @staticmethod def from_json(data: dict): fields = PyOrmModel.fields() model = PyOrmModel() for field in fields: if field in data: model.__setattr__(field, data[field]) return model
3.数据库操作的封装,与参考的文章不同,我是直接调用了session,从而使调用方不需要关注model层,减少耦合。
# py_orm_model_op.py from sqlachlemy_lab.model import db_session from sqlachlemy_lab.model import PyOrmModel class PyOrmModelOp: def __init__(self): pass @staticmethod def save_data(data: dict): with db_session() as session: model = PyOrmModel.from_json(data) session.add(model) # 查询操作,不需要commit @staticmethod def query_data(pid: int): data_list = [] with db_session(commit=False) as session: data = session.query(PyOrmModel).filter(PyOrmModel.id == pid) for d in data: data_list.append(PyOrmModel.to_json(d)) return data_list
4.调用方:
# main.py from sqlachlemy_lab.model_op import PyOrmModelOp if __name__ == '__main__': PyOrmModelOp.save_data({'id': 1, 'name': 'test', 'attr': {}})
以上是一个超方便使用SQL的Python神器!的详细内容。更多信息请关注PHP中文网其他相关文章!

Tomergelistsinpython,YouCanusethe操作员,estextMethod,ListComprehension,Oritertools

在Python3中,可以通过多种方法连接两个列表:1)使用 运算符,适用于小列表,但对大列表效率低;2)使用extend方法,适用于大列表,内存效率高,但会修改原列表;3)使用*运算符,适用于合并多个列表,不修改原列表;4)使用itertools.chain,适用于大数据集,内存效率高。

使用join()方法是Python中从列表连接字符串最有效的方法。1)使用join()方法高效且易读。2)循环使用 运算符对大列表效率低。3)列表推导式与join()结合适用于需要转换的场景。4)reduce()方法适用于其他类型归约,但对字符串连接效率低。完整句子结束。

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python的关键特性包括:1.语法简洁易懂,适合初学者;2.动态类型系统,提高开发速度;3.丰富的标准库,支持多种任务;4.强大的社区和生态系统,提供广泛支持;5.解释性,适合脚本和快速原型开发;6.多范式支持,适用于各种编程风格。

Python是解释型语言,但也包含编译过程。1)Python代码先编译成字节码。2)字节码由Python虚拟机解释执行。3)这种混合机制使Python既灵活又高效,但执行速度不如完全编译型语言。

useeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.ForloopSareIdeAlforkNownsences,而WhileLeleLeleLeleLoopSituationSituationSituationsItuationSuationSituationswithUndEtermentersitations。

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐个偏置,零indexingissues,andnestedloopineflinefficiencies


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

禅工作室 13.0.1
功能强大的PHP集成开发环境

SublimeText3 Linux新版
SublimeText3 Linux最新版

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中