搜索
首页科技周边人工智能TensorFlow应用技术拓展—图像分类

TensorFlow应用技术拓展—图像分类

Apr 18, 2023 pm 04:07 PM
技术应用

1.科研平台环境部署操作拓展

针对于机器学习中的模型训练,本人推荐大家多学习TensorFlow官方的课程或资源,比如中国大学MOOC上的两门课程​《 TensorFlow 入门实操课程 》​​和​《 TensorFlow 入门课程 - 部署篇 》​​。科研或者工作过程中涉及的模型分布式训练,可能一个资源平台往往会非常耗时,无法及时满足个人需求。在这里,我将就上一篇​​《初步了解TensorFlow框架学习》​​提到的九天毕昇平台的使用进行一个具体的拓展,来方便学生和用户来更快捷地进行模型训练。该平台可以进行数据管理,模型训练等任务,是一个方便快捷的科研任务实践平台。在模型训练中具体操作步骤为:

(1)注册并登录九天毕昇平台,由于后续训练任务需消耗算力豆,而新用户的算力豆数量有限,但可以通过分享好友等任务来完成算力豆的获取。同时针对大型模型训练任务,为获取更多的模型训练存储空间,可邮件方式联系该平台的工作人员进行了控制台的升级,从而达到了日后所需的训练存储要求。存储和算力豆详情如下图:

TensorFlow应用技术拓展—图像分类

(2)进入数据管理界面部署科研项目模型使用的数据集,通过将科研任务所需的数据集进行打包上传,完成模型训练所需数据集在该平台上的部署。

TensorFlow应用技术拓展—图像分类

(3)在模型训练窗口新增项目训练实例,选择之前导入的数据集和所需的CPU资源。创建后的实例即为科研所需要训练的单个模型文件。新增项目实例的详情如下图所示:

TensorFlow应用技术拓展—图像分类

TensorFlow应用技术拓展—图像分类

(4)运行新增的项目实例,即运行项目训练环境,运行成功后,则可以选择jupyter编辑器创建和编辑所需的代码文件。

TensorFlow应用技术拓展—图像分类

TensorFlow应用技术拓展—图像分类

(5)后续代码编写和模型训练即可使用jupyter编辑器进行操作即可。

2. 图像分类技术拓展

图像分类,顾名思义就是根据图像之间差异性来对不同图像进行类别判断。而针对图像之间地差异性去设计判别模型就是机器学习中需要去掌握的知识。图像分类的基本知识和操作过程可以参考中国大学MOOC上的《TensorFlow入门实操课程》,快速了解TensorFlow基础应用与设计思路。。​https://www.php.cn/link/b977b532403e14d6681a00f78f95506e

本章主要是想通过拓展图像分类技术来让接触该课程的用户更加深入地理解图像分类。

2.1 卷积操作有什么用?

说到对图像进行处理或者分类,必然绕不开一个操作,这个操作就是卷积。具体的卷积操作通过学习视频基本都能了解,但是更多的读者可能也只是停留在会如何进行卷积操作的程度上,而对于为什么去进行卷积,卷积操作有什么用这些仍然是一知半解。这里为大家进行一定拓展来帮助大家更好理解卷积。

基本的卷积过程下图所示,以图像为例,使用一个矩阵来表示图像,矩阵的每个元素即为图像中对应的像素值。卷积操作就是通过将卷积核逐乘对应的矩阵,从而得到这些小区域的特征值。而提取到的特征会因为卷积核的不同而有所差异,这也是后续会有人对图像不同通道进行卷积操作来获取图像不同通道的特征,来更好地进行后续分类任务。

TensorFlow应用技术拓展—图像分类

在日常地模型训练中,具体地卷积核并不需要进行人工设计,而是通过给定图像的真实标签,使用网络来自动训练出来的,但是这样的过程不利于人们去理解卷积核和卷积过程,或者说不直观。因此为了帮助大家更好理解卷积操作的意义,在这举一个卷积操作的例子。如下图矩阵所示,数值表示图形的像素,为了方便计算,在这里只取了0和1, 不难看出该矩阵图形的特点上面一半图形是明亮的,下面一半图形是黑的,因此该图像具有很清晰的一道分界线,即具有很明显的水平特征。

TensorFlow应用技术拓展—图像分类

因此为了很好地提取上述矩阵的水平特征,设计的卷积核应该也要具有水平特征提取的属性。而采用垂直特征提取属性的卷积核相对而言在特征提取的明显程度上会略显不足。 如下所示,采用提取水平特征的卷积核进行卷积:

TensorFlow应用技术拓展—图像分类

由得到的卷积结果矩阵可知,原始图形的水平特征被很好地提取出来,并且图形地分界线会更加明显,因为图形有颜色的部分像素值加深了,很好地提取并突出了图形的水平特征。当采用提取垂直特征的卷积核进行卷积时:

TensorFlow应用技术拓展—图像分类

由得到的卷积结果矩阵可知,原始图形的水平特征也能被提取出来,但是会产生两条分界线,图形变化由特别明亮到明亮再到黑,反映到真实图形上的情况也就变成由明到暗再到黑的情况,与真实原始图形反应的水平特征有所差别。

由上述例子不难得知,卷积核的不同会影响最终提取的图形特征的优劣程度,同时不同图形所反应出来的特征也有所不同,如何根据图形特征属性的不同来设计出网络模型来更好地学习和设计出卷积核也尤为关键。在实际地图形分类项目中,就需要根据图像的差异来选择提取合适的特征,并且往往需要有所取舍的去考虑。           

2.2 如何考虑卷积来更好的进行图像分类?

在上一节中通过卷积操作的作用可以知道,设计网络模型来更好地去学习出适配图像的卷积核尤为重要。但在实际应用中,都是通过给定图像类别的真实标签,将类别标签转成机器能够理解的向量数据,来自动学习训练。当然,也不是完全无法通过人工设置来改善的。虽然数据集的标签是固定好的,但是我们可以根据数据集的图片类型去选择不同的网络模型,针对不同的网络模型的优劣势去考虑往往会有不错的训练效果。

同时在提取图像特征时,也可以考虑使用多任务学习的方法,在已有的图像数据中,再次同样使用一次图像数据去提取一些额外的图像特征(例如图像的通道特征和空间特征等),然后对之前提取到的特征进行一个补充或者填充,来完善最终提取到的图像特征。当然,有时候这种操作会造成提取的特征冗余,取得的分类效果往往适得其反,因此需要根据实际训练的分类结果去酌情考量。

2.3 网络模型选择的一些建议

图像分类领域发展已经有很长一段时间了,从最初经典的AlexNet网络模型到近几年火热的ResNet网络模型等,图像分类技术已经发展地比较完善,对于一些常用的图像数据集的分类准确率已经趋于100%。目前该领域中,大多数人采用的网络模型都是选择最新的,并且在大多数图像分类任务中,使用最新的网络模型确实可以带来很明显的分类效果,由此很多人在这一领域中往往会忽略以前的网络模型,直接去学习最新的、流行的网络模型。

在这,本人还是建议各位读者能够对图形分类领域的一些经典的网络模型都需要去进行一个熟悉,因为技术的更新迭代是非常快的,即使现在最新的网络模型今后也可能会被淘汰,但是基本的网络模型运行的原理是大致相通的,通过掌握经典的网络模型,不仅可以掌握基本的原理,还可以明白不同网络模型之间的差异和针对不同任务处理时的优劣性。例如,当你的图像数据集比较小时,采用最新的网络模型训练起来可能会非常复杂耗时,但是提升的效果微乎其微,因此为了可以忽略不计的效果去牺牲自己的训练时间成本反而得不偿失。因此,对于图像分类网络模型的掌握需要做到知其然还能知其所以然,这样今后选择图像分类模型时真正能做到有的放矢。

作者介绍:

稀饭,51CTO社区编辑,曾任职某电商人工智能研发中心大数据技术部门,做推荐算法。目前从事自然语言处理方向研究,主要擅长领域有推荐算法、NLP、CV,使用代码语言有Java、Python、Scala。发表ICCC会议论文一篇。

以上是TensorFlow应用技术拓展—图像分类的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
优化您的组织与Genai代理商的电子邮件营销优化您的组织与Genai代理商的电子邮件营销Apr 13, 2025 am 11:44 AM

介绍 恭喜!您经营一家成功的业务。通过您的网页,社交媒体活动,网络研讨会,会议,免费资源和其他来源,您每天收集5000个电子邮件ID。下一个明显的步骤是

Apache Pinot实时应用程序性能监视Apache Pinot实时应用程序性能监视Apr 13, 2025 am 11:40 AM

介绍 在当今快节奏的软件开发环境中,确保最佳应用程序性能至关重要。监视实时指标,例如响应时间,错误率和资源利用率可以帮助MAIN

Chatgpt击中了10亿用户? Openai首席执行官说:'短短几周内翻了一番Chatgpt击中了10亿用户? Openai首席执行官说:'短短几周内翻了一番Apr 13, 2025 am 11:23 AM

“您有几个用户?”他扮演。 阿尔特曼回答说:“我认为我们上次说的是每周5亿个活跃者,而且它正在迅速增长。” “你告诉我,就像在短短几周内翻了一番,”安德森继续说道。 “我说那个私人

pixtral -12b:Mistral AI'第一个多模型模型 - 分析Vidhyapixtral -12b:Mistral AI'第一个多模型模型 - 分析VidhyaApr 13, 2025 am 11:20 AM

介绍 Mistral发布了其第一个多模式模型,即Pixtral-12b-2409。该模型建立在Mistral的120亿参数Nemo 12B之上。是什么设置了该模型?现在可以拍摄图像和Tex

生成AI应用的代理框架 - 分析Vidhya生成AI应用的代理框架 - 分析VidhyaApr 13, 2025 am 11:13 AM

想象一下,拥有一个由AI驱动的助手,不仅可以响应您的查询,还可以自主收集信息,执行任务甚至处理多种类型的数据(TEXT,图像和代码)。听起来有未来派?在这个a

生成AI在金融部门的应用生成AI在金融部门的应用Apr 13, 2025 am 11:12 AM

介绍 金融业是任何国家发展的基石,因为它通过促进有效的交易和信贷可用性来推动经济增长。交易的便利和信贷

在线学习和被动攻击算法指南在线学习和被动攻击算法指南Apr 13, 2025 am 11:09 AM

介绍 数据是从社交媒体,金融交易和电子商务平台等来源的前所未有的速度生成的。处理这种连续的信息流是一个挑战,但它提供了

您需要查看的3台Openai' s的动手实验 - 分析Vidhya您需要查看的3台Openai' s的动手实验 - 分析VidhyaApr 13, 2025 am 11:06 AM

介绍 您在讲话之前真正思考和理性多久?当前最新的LLM GPT-4O已经在不花很多时间做出回应的情况下提供了令人印象深刻的回应。但是想象一下它是否开始服用

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具