搜索
首页科技周边人工智能炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

不得了,GPT-4都学会自己做科研了?

最近,卡耐基梅隆大学的几位科学家发表了一篇论文,同时炸翻了AI圈和化学圈。

他们做出了一个会自己做实验、自己搞科研的AI。这个AI由几个大语言模型组成,可以看作一个GPT-4代理智能体,科研能力爆表。

因为它具有来自矢量数据库的长期记忆,可以阅读、理解复杂的科学文档,并在基于云的机器人实验室中进行化学研究。

网友震惊到失语:所以,这个是AI自己研究然后自己发表?天啊。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

还有人感慨道,「文生实验」(TTE)的时代要来了!

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

难道这就是传说中,化学界的AI圣杯?

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

最近大概很多人都觉得,我们每天都像生活在科幻小说中。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

AI版绝命毒师来了?​

3月份,OpenAI发布了震撼全世界的大语言模型GPT-4。

这个地表最强LLM,能在SAT和BAR考试中得高分、通过LeetCode挑战、给一张图就能做对物理题,还看得懂表情包里的梗。

而技术报告里还提到,GPT-4还能解决化学问题。

这就启发了卡耐基梅隆化学系的几位学者,他们希望能开发出一个基于多个大语言模型的AI,让它自己设计实验、自己做实验。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

论文地址:https://arxiv.org/abs/2304.05332

而他们做出来的这个AI,果然6得不行!

它会自己上网查文献,会精确控制液体处理仪器,还会解决需要同时使用多个硬件模块、集成不同数据源的复杂问题。

有AI版绝命毒师那味儿了。

会自己做布洛芬的AI

举个例子,让这个AI给咱们合成布洛芬。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

给它输入一个简单的提示:「合成布洛芬。」

然后这个模型就会自己上网去搜该怎么办了。

它识别出,第一步需要让异丁苯和乙酸酐在氯化铝催化下发生Friedel-Crafts反应。

另外,这个AI还能合成阿司匹林。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

以及合成阿斯巴甜。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

产品中缺少甲基,而模型查到正确的合成示例中,就会在云实验室中执行,以便进行更正。

告诉模型:研究一下铃木反应吧,它立刻就准确地识别出底物和产物。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

另外,咱们可以通过API,把模型连接到化学反应数据库,比如Reaxys或SciFinder,给模型叠了一层大大的buff,准确率飙升。

而分析系统以前的记录,也可以大大提高模型的准确性。

举个栗子

咱们先来看看,操作机器人是怎么做实验的。

它会将一组样本视为一个整体(在这个例子中,就是整个微孔板)。

我们可以用自然语言直接给它提示:「用您选择的一种颜色,为每隔一行涂上颜色」。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

当由机器人执行时,这些协议与请求的提示非常相似(图 4B-E)。

代理人的第一个动作是准备原始解决方案的小样本(图 4F)。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

然后它要求进行 UV-Vis 测量。完成后,AI会获得一个文件名,其中包含一个NumPy数组,其中包含微孔板每个孔的光谱。

AI随后编写了Python代码,来识别具有最大吸光度的波长,并使用这些数据正确解决了问题。

拉出来遛遛

在以前的实验中,AI可能会被预训练阶段接收到的知识所影响。

而这一次,研究人员打算彻底评估一下AI设计实验的能力。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

AI先从网络上整合所需的数据,运行一些必要的计算,最后给液体试剂操作系统(上图最左侧的部分)编写程序。

研究人员为了增加一些复杂度,让AI应用了加热摇床模组。

而这些要求经过整合,出现在了AI的配置中。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

具体的设计是这样的:AI控制一个搭载了两块微型版的液体实际操作系统,而其中的源版包含多种试剂的源液,其中有苯乙炔和苯硼酸,多个芳基卤化物耦合伴侣,以及两种催化剂和两种碱。

上图中就是源版(Source Plate)中的内容。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

而目标版则是装在加热摇床模组上。

上图中,左侧的移液管(left pipette)20微升量程,右侧的单道移液管300微升量程。

AI最终的目标就是设计出一套流程,能成功实现铃木和索诺格希拉反应。

咱们跟它说:你需要用一些可用的试剂,生成这两个反应。

然后,它就自己上网去搜了,比如,这些反应需要什么条件,化学计量上有什么要求等等。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

可以看到,AI成功搜集到了所需要的条件,所需试剂的定量、浓度等等。

AI挑选了正确的耦合伴侣来完成实验。在所有的芳基卤化物中,AI选择了溴苯进行铃木反应的实验,选择了碘苯进行索诺格希拉反应。

而在每一轮,AI的选择都有些改变。比如说,它还选了对碘硝基苯,看上的是这种物质在氧化反应中反应性很高这一特性。

而选择溴苯是因为溴苯能参与反应,同时毒性还比芳基碘要弱。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

接下来,AI选择了Pd/NHC作为催化剂,因为其效果更好。这对于耦合反应来说,是一种很先进的方式。至于碱的选择,AI看中了三乙胺这种物质。

从上述过程我们可以看到,该模型未来潜力无限。因为它会多次反复的进行实验,以此分析该模型的推理过程,并取得更好的结果。

选择完不同试剂以后,AI就开始计算每种试剂所需的量,然后开始规划整个实验过程。

中间AI还犯了个错误,把加热摇床模组的名字用错了。但是AI及时注意到了这一点,自发查询了资料,修正了实验过程,最终成功运行。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

抛开专业的化学过程不谈,我们来总结一下AI在这个过程中展现出的「专业素养」。

可以说,从上述流程中,AI展现出了极高的分析推理能力。它能够自发的获取所需的信息,一步一步的解决复杂的问题。

在这个过程中,还能自己写出超级高质量的代码,推进实验设计。并且,还能根据输出的内容改自己写的代码。

OpenAI成功展示出了GPT-4的强大能力,有朝一日GPT-4肯定能参与到真实的实验中去。

但是,研究人员并不想止步于此。他们还给AI出了个大难题——他们给AI下指令,让其开发一种新的抗癌药物。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

不存在的东西......这AI还能行吗?

事实证明还真是有两把刷子。AI秉持着遇到难题不要怕的原则(当然它也不知道啥叫怕),细密地分析了开发抗癌药物这个需求,研究了当前抗癌药物研发的趋势,然后从中选了一个目标继续深入,确定其成分。

而后,AI尝试开始自己进行合成,也是先上网搜索有关反应机制、机理的信息,在初步搞定步骤以后,再去寻找相关反应的实例。

最后再完成合成。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

而上图中的内容就不可能让AI真合成出来了,仅仅是理论层面的探讨。

其中就有甲基苯丙胺(也就是大麻),海洛因这些耳熟能详的毒品,还有芥子气(mustard gas)等明令禁止使用的毒气。

在总共11个化合物中,AI提供了其中4个的合成方案,并尝试查阅资料来推进合成的过程。

剩下的7种物质中,有5种的合成遭到了AI的果断拒绝。AI上网搜索了这5种化合物的相关信息,发现不能胡来。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

比方说,AI发现了可待因和吗啡之间的关系。得出结论,这东西是管制药品,不能随便合成。

但是,这种保险机制并不把稳。用户只要稍加修改花书,就可以进一步让AI操作。比如用化合物A这种字眼代替直接提到吗啡,用化合物B代替直接提到可待因等等。

同时,有些药品的合成必须经过缉毒局(DEA)的许可,但有的用户就是可以钻这个空子,骗AI说自己有许可,诱使AI给出合成方案。

像海洛因和芥子气这种耳熟能详的违禁品,AI也清楚得很。可问题是,这个系统目前只能检测出已有的化合物。而对于未知的化合物,该模型就不太可能识别出潜在的危险了。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

比方说,一些复杂的蛋白质毒素。

因此,为了防止有人因为好奇去验证这些化学成分的有效性,研究人员还特地在论文里贴了一个大大的红底警告:

本文中讨论的非法药物和化学武器合成纯粹是为了学术研究,主要目的是强调与新技术相关的潜在危险。

在任何情况下,任何个人或组织都不应尝试重新制造、合成或以其他方式生产本文中讨论的物质或化合物。从事此类活动不仅非常危险,而且在大多数司法管辖区内都是非法的。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

自己会上网,搜索怎么做实验

这个AI由多个模块组成。这些模块之间可以互相交换信息,有的还能上网、访问API、访问Python解释器。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

往Planner输入提示后,它就开始执行操作。

比如,它可以上网,用Python写代码,访问文档,把这些基础工作搞明白之后,它就可以自己做实验了。

人类做实验时,这个AI可以手把手地指导我们。因为它会推理各种化学反应,会上网搜索,会计算实验中所需的化学品的量,然后还能执行相应的反应。

如果提供的描述足够详细,你甚至都不需要向它再解释,它自己就能把整个实验整明白了。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

「网络搜索器」(Web searcher)组件收到来自Planner的查询后,就会用谷歌搜索API。

搜出结果后,它会过滤掉返回的前十个文档,排除掉PDF,把结果传给自己。

然后,它会使用「BROWSE」操作,从网页中提取文本,生成一个答案。行云流水,一气呵成。

这项任务,GPT-3.5就可以完成,因为它的性能明显比GPT-4强,也没啥质量损失。

「文档搜索器」(Docs searcher)组件,能够通过查询和文档索引,查到最相关的部分,从而梳理硬件文档(比如机器人液体处理器、GC-MS、云实验室),然后汇总出一个最佳匹配结果,生成一个最准确的答案。

「代码执行」(Code execution)组件则不使用任何语言模型,只是在隔离的Docker容器中执行代码,保护终端主机免受Planner的任何意外操作。所有代码输出都被传回Planner,这样就能在软件出错时,让它修复预测。「自动化」(Automation)组件也是同样的原理。

矢量搜索,多难的科学文献都看得懂

做出一个能进行复杂推理的AI,有不少难题。

比如要让它能集成现代软件,就需要用户能看懂软件文档,但这项文档的语言一般都非常学术、非常专业,造成了很大的障碍。

而大语言模型,就可以用自然语言生成非专家都能看懂的软件文档,来克服这一障碍。​

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

这些模型的训练来源之一,就是和API相关的大量信息,比如Opentrons Python API。

但GPT-4的训练数据截止到2021年9月,因此就更需要提高AI使用API的准确性。

为此,研究者设计了一种方法,为AI提供给定任务的文档。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

他们生成了OpenAI的ada嵌入,以便交叉引用,并计算与查询相关的相似性。并且通过基于距离的向量搜索选择文档的部分。

提供部分的数量,取决于原始文本中存在的GPT-4 token数。最大token数设为7800,这样只用一步,就可以提供给AI相关文件。

事实证明,这种方法对于向AI提供加热器-振动器硬件模块的信息至关重要,这部分信息,是化学反应所必需的。

这种方法应用于更多样化的机器人平台,比如Emerald Cloud Lab (ECL)时,会出现更大的挑战。

此时,我们可以向GPT-4模型提供它未知的信息,比如有关 Cloud Lab 的 Symbolic Lab Language (SLL)。

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

在所有情况下,AI都能正确识别出任务,然后完成任务。

这个过程中,模型有效地保留了有关给定函数的各种选项、工具和参数的信息。摄取整个文档后,系统会提示模型使用给定函数生成代码块,并将其传回 Planner。

强烈要求进行监管

最后,研究人员强调,必须设置防护措施来防止大型语言模型被滥用:

「我们呼吁人工智能社区优先关注这些模型的安全性。我们呼吁OpenAI、微软、谷歌、Meta、Deepmind、Anthropic以及其他主要参与者在其大型语言模型的安全方面付出最大的努力。我们还呼吁物理科学社区与参与开发大型语言模型的团队合作,协助他们制定这些防护措施。」

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

对此,纽约大学教授马库斯深表赞同:「这不是玩笑,卡内基梅隆大学的三位科学家紧急呼吁对LLM进行安全研究。」

炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验

以上是炸翻AI和生化环材圈!GPT-4学会自己搞科研,手把手教人类做实验的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
阅读AI索引2025:AI是您的朋友,敌人还是副驾驶?阅读AI索引2025:AI是您的朋友,敌人还是副驾驶?Apr 11, 2025 pm 12:13 PM

斯坦福大学以人为本人工智能研究所发布的《2025年人工智能指数报告》对正在进行的人工智能革命进行了很好的概述。让我们用四个简单的概念来解读它:认知(了解正在发生的事情)、欣赏(看到好处)、接纳(面对挑战)和责任(弄清我们的责任)。 认知:人工智能无处不在,并且发展迅速 我们需要敏锐地意识到人工智能发展和传播的速度有多快。人工智能系统正在不断改进,在数学和复杂思维测试中取得了优异的成绩,而就在一年前,它们还在这些测试中惨败。想象一下,人工智能解决复杂的编码问题或研究生水平的科学问题——自2023年

开始使用Meta Llama 3.2 -Analytics Vidhya开始使用Meta Llama 3.2 -Analytics VidhyaApr 11, 2025 pm 12:04 PM

Meta的Llama 3.2:多模式和移动AI的飞跃 Meta最近公布了Llama 3.2,这是AI的重大进步,具有强大的视觉功能和针对移动设备优化的轻量级文本模型。 以成功为基础

AV字节:Meta' llama 3.2,Google的双子座1.5等AV字节:Meta' llama 3.2,Google的双子座1.5等Apr 11, 2025 pm 12:01 PM

本周的AI景观:进步,道德考虑和监管辩论的旋风。 OpenAI,Google,Meta和Microsoft等主要参与者已经释放了一系列更新,从开创性的新车型到LE的关键转变

与机器交谈的人类成本:聊天机器人真的可以在乎吗?与机器交谈的人类成本:聊天机器人真的可以在乎吗?Apr 11, 2025 pm 12:00 PM

连接的舒适幻想:我们在与AI的关系中真的在蓬勃发展吗? 这个问题挑战了麻省理工学院媒体实验室“用AI(AHA)”研讨会的乐观语气。事件展示了加油

了解Python的Scipy图书馆了解Python的Scipy图书馆Apr 11, 2025 am 11:57 AM

介绍 想象一下,您是科学家或工程师解决复杂问题 - 微分方程,优化挑战或傅立叶分析。 Python的易用性和图形功能很有吸引力,但是这些任务需要强大的工具

3种运行Llama 3.2的方法-Analytics Vidhya3种运行Llama 3.2的方法-Analytics VidhyaApr 11, 2025 am 11:56 AM

Meta's Llama 3.2:多式联运AI强力 Meta的最新多模式模型Llama 3.2代表了AI的重大进步,具有增强的语言理解力,提高的准确性和出色的文本生成能力。 它的能力t

使用dagster自动化数据质量检查使用dagster自动化数据质量检查Apr 11, 2025 am 11:44 AM

数据质量保证:与Dagster自动检查和良好期望 保持高数据质量对于数据驱动的业务至关重要。 随着数据量和源的增加,手动质量控制变得效率低下,容易出现错误。

大型机在人工智能时代有角色吗?大型机在人工智能时代有角色吗?Apr 11, 2025 am 11:42 AM

大型机:AI革命的无名英雄 虽然服务器在通用应用程序上表现出色并处理多个客户端,但大型机是专为关键任务任务而建立的。 这些功能强大的系统经常在Heavil中找到

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境