译者 | 布加迪
审校 | 孙淑娟
欢迎来到量子机器学习世界!本教程将通过一个使用示例数据集的入门级项目,提供附有代码的分步走指导。本教程结束时,您将对如何使用量子计算机来执行机器学习任务有一番基本的理解,并帮助构建您的第一个量子模型。
但在深入学习本教程之前,先了解量子机器学习是什么、它为什么如此令人兴奋。
量子机器学习是量子计算和机器学习交汇的领域。它使用量子计算机来执行机器学习任务,比如分类、回归和聚类。量子计算机是一种功能强大的机器,使用量子比特(量子位)而不是传统比特来存储和处理信息。这使得它们执行某些任务的速度比传统计算机快得多,特别适合涉及大量数据的机器学习任务。
现在直接开始教程吧!
我们在本教程中将使用PennyLane库用于量子机器学习,使用NumPy用于数值计算,使用Matplotlib用于数据可视化。您可以通过运行以下命令使用pip安装这些库:
!pip install pennylane !pip install numpy !pip install matplotlib
我们在本教程中将使用Iris数据集,该数据集由鸢尾花的150个样本组成,这些鸢尾花有四个特征:萼片长度、萼片宽度、花瓣长度和花瓣宽度。该数据集包含在sklearn库中,所以我们可以使用以下代码来加载它:
from sklearn import datasets # Load the iris dataset iris = datasets.load_iris() X = iris['data'] y = iris['target']
我们将使用训练集来训练我们的量子模型,使用测试集来评估其性能。我们可以使用来自sklearn.model_selection 模块的 train_test_split函数来分割数据集:
from sklearn.model_selection import train_test_split # Split the dataset into training and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
在我们可以使用数据来训练量子模型之前,我们需要预处理数据。一个常见的预处理步骤是规范化,即调整数据,以便它有零平均值和单位方差。我们可以使用来自sklearn.preprocessing模块的 StandardScaler类来执行规范化:
from sklearn.preprocessing import StandardScaler # Initialize the scaler scaler = StandardScaler() # Fit the scaler to the training data scaler.fit(X_train) # Scale the training and test data X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test)
这段代码初始化StandardScaler对象,并使用fit方法将其拟合训练数据。然后,它使用transform方法来调整训练和测试数据。
规范化之所以是一个重要的预处理步骤,是由于它确保数据的所有特征都在同一尺度上,这可以改善量子模型的性能。
现在我们准备使用 PennyLane库来定义量子模型。第一步是导入必要的函数,并创建量子设备:
import pennylane as qml # Choose a device (e.g., 'default.qubit') device = qml.device('default.qubit')
下一步,我们将定义一个量子函数,它摄入数据作为输入,返回预测。我们将使用一个简单的量子神经网络,只有一层量子神经元:
@qml.qnode(device) def quantum_neural_net(weights, data): # Initialize the qubits qml.templates.AmplitudeEmbedding(weights, data) # Apply a layer of quantum neurons qml.templates.StronglyEntanglingLayers(weights, data) # Measure the qubits return qml.expval(qml.PauliZ(0))
该量子函数摄取两个变量:weights(这是量子神经网络的参数)和data(这是输入数据)。
第一行使用来自 PennyLane的AmplitudeEmbedding模板初始化量子位。该模板将数据映射到量子位的振幅上,以便保留数据点之间的距离。
第二行使用StronglyEntanglingLayers模板来应用一层量子神经元。该模板将一系列纠缠操作应用到量子位上,然后量子位可用于实现通用量子计算。
最后,最后一行以Pauli-Z度量基础测量量子位,并返回预期值。
为了训练量子模型,我们需要定义成本函数,以测量模型性能有多好。就本教程而言,我们将使用均方误差(MSE)作为成本函数:
def cost(weights, data, labels): # Make predictions using the quantum neural network predictions = quantum_neural_net(weights, data) # Calculate the mean squared error mse = qml.mean_squared_error(labels, predictions) return mse
该成本函数摄取三个变量:weights(这是量子模型的参数)、data(这是输入数据)和labels(这是数据的真实标签)。它使用量子神经网络基于输入数据做预测,并计算预测和真实标签之间的MSE。
MSE是机器学习中的常见成本函数,测量预测值和真实值之间的平均平方差。较小的MSE表明模型更拟合数据。
现在,我们准备使用梯度下降法来训练量子模型。我们将使用来自PennyLane 的AdamOptimizer类来执行优化:
# Initialize the optimizer opt = qml.AdamOptimizer(stepsize=0.01) # Set the number of training steps steps = 100 # Set the initial weights weights = np.random.normal(0, 1, (4, 2)) # Train the model for i in range(steps): # Calculate the gradients gradients = qml.grad(cost, argnum=0)(weights, X_train_scaled, y_train) # Update the weights opt.step(gradients, weights) # Print the cost if (i + 1) % 10 == 0: print(f'Step {i + 1}: cost = {cost(weights, X_train_scaled, y_train):.4f}')
这段代码初始化优化器,步长为0.01,并将训练步数设置为100。然后,它将模型的初始权重设置为从均值为0、标准差为1的正态分布中抽取的随机值。
在每个训练步骤中,代码使用 qml.grad 函数计算相对于权重的成本函数梯度。然后,它使用opt.step方法更新权重,并每10步输出成本。
梯度下降法是机器学习中常见的优化算法,它迭代更新模型参数以最小化成本函数。AdamOptimizer是梯度下降的一种变体,它使用自适应学习率,这可以帮助优化更快地收敛。
我们已经训练了量子模型,可以评估它在测试集上的性能。我们可以使用以下代码来测试:
# Make predictions on the test set predictions = quantum_neural_net(weights, X_test_scaled) # Calculate the accuracy accuracy = qml.accuracy(predictions, y_test) print(f'Test accuracy: {accuracy:.2f}')
这段代码使用量子神经网络基于测试集做预测,并使用qml.accuracy 函数计算预测准确性。然后,它输出测试准确性。
最后,我们可以使用Matplotlib直观显示量子模型的结果。比如说,我们可以对照真实标签绘制出测试集的预测结果:
import matplotlib.pyplot as plt # Plot the predictions plt.scatter(y_test, predictions) # Add a diagonal line x = np.linspace(0, 3, 4) plt.plot(x, x, '--r') # Add axis labels and a title plt.xlabel('True labels') plt.ylabel('Predictions') plt.title('Quantum Neural Network') # Show the plot plt.show()
这段代码将对照真实标签创建预测的散点图,增添对角线以表示完美预测。然后它为散点图添加轴线标签和标题,并使用plt.show函数来显示。
现在,我们已成功地构建了一个量子机器学习模型,并在示例数据集上评估了性能。
为了测试量子模型的性能,我们运行了教程中提供的代码,获得了以下结果:
Step 10: cost = 0.5020 Step 20: cost = 0.3677 Step 30: cost = 0.3236 Step 40: cost = 0.3141 Step 50: cost = 0.3111 Step 60: cost = 0.3102 Step 70: cost = 0.3098 Step 80: cost = 0.3095 Step 90: cost = 0.3093 Step 100: cost = 0.3092 Test accuracy: 0.87
这些结果表明,量子模型能够从训练数据中学习,并基于测试集做出准确的预测。在整个训练过程中,成本稳步下降,这表明模型在学习过程中不断改进。最终的测试准确率为0.87,表现相当好,这表明该模型能够正确地分类大部分测试样例。
量子机器学习是一个令人兴奋的领域,有许多潜在的应用,从优化供应链到预测股价,不一而足。我们希望本教程能让您了解量子计算机和机器学习的可能性,并激励您深入了解这个诱人的话题。
原文标题:Quantum Machine Learning: A Beginner’s Guide,作者:SPX
以上是量子机器学习:新手指南的详细内容。更多信息请关注PHP中文网其他相关文章!