搜索
首页科技周边人工智能推理速度比Stable Diffusion快2倍,生成、修复图像谷歌一个模型搞定,实现新SOTA

文本到图像生成是 2022 年最火的 AIGC 方向之一,被《science》评选为 2022 年度十大科学突破。最近,谷歌的一篇文本到图像生成新论文《Muse: Text-To-Image Generation via Masked Generative Transformers》又引起高度关注。

图片

  • 论文地址:https://arxiv.org/pdf/2301.00704v1.pdf
  • 项目地址:https://muse-model.github.io/

该研究提出了一种使用掩码图像建模方法进行文本到图像合成的新模型,其中的图像解码器架构以来自预训练和 frozen T5-XXL 大型语言模型 (LLM) 编码器的嵌入为条件。

与谷歌先前的 Imagen 模型类似,该研究发现基于预训练 LLM 进行调整对于逼真、高质量的图像生成至关重要。Muse 模型是建立在 Transformer (Vaswani et al., 2017) 架构之上。

与建立在级联像素空间(pixel-space)扩散模型上的 Imagen (Saharia et al., 2022) 或 Dall-E2 (Ramesh et al., 2022) 相比,Muse 由于使用了离散 token,效率显著提升。与 SOTA 自回归模型 Parti (Yu et al., 2022) 相比,Muse 因使用并行解码而效率更高。

基于在 TPU-v4 上的实验结果,研究者估计 Muse 在推理速度上比 Imagen-3B 或 Parti-3B 模型快 10 倍以上,比 Stable Diffusion v1.4 (Rombach et al., 2022) 快 2 倍。研究者认为:Muse 比 Stable Diffusion 推理速度更快是因为 Stable Diffusion v1.4 中使用了扩散模型,在推理时明显需要更多次迭代。

另一方面,Muse 效率的提升没有造成生成图像质量下降、模型对输入文本 prompt 的语义理解能力降低的问题。该研究根据多个标准评估了 Muse 的生成结果,包括 CLIP 评分 (Radford et al., 2021) 和 FID (Heusel et al., 2017)。Muse-3B 模型在 COCO (Lin et al., 2014) 零样本验证基准上取得了 0.32 的 CLIP 分数和 7.88 的 FID 分数。

下面我们看看 Muse 生成效果:

文本 - 图像生成:Muse 模型从文本提示快速生成高质量的图像(在 TPUv4 上,对于 512x512 分辨率的图像需要时间为 1.3 秒,生成 256x256 分辨率的图像需要时间为 0.5 秒)。例如生成「一只熊骑着自行车,一只鸟栖息在车把上」:

图片

Muse 模型通过对文本提示条件下的图像 token 进行迭代重新采样,为用户提供了零样本、无掩码编辑(mask-free editing)。

图片

Muse 还提供了基于掩码的编辑,例如「在美丽的秋叶映照下,有一座凉亭在湖上」。

图片

模型简介

Muse 建立在许多组件之上,图 3 提供了模型体系架构概述。

图片

具体而言所包含的组件有:

预训练文本编码器:该研究发现利用预训练大型语言模型(LLM)可以提高图像生成质量。他们假设,Muse 模型学会了将 LLM 嵌入中的丰富视觉和语义概念映射到生成的图像。给定一个输入文本字幕,该研究将其通过冻结的 T5-XXL 编码器,得到一个 4096 维语言嵌入向量序列。这些嵌入向量线性投影到 Transformer 模型。

使用 VQGAN 进行语义 Tokenization:该模型的核心组件是使用从 VQGAN 模型获得的语义 token。其中,VQGAN 由一个编码器和一个解码器组成,一个量化层将输入图像映射到一个学习码本中的 token 序列。该研究全部使用卷积层构建编码器和解码器,以支持对不同分辨率图像进行编码。

基础模型:基础模型是一个掩码 transformer,其中输入是投影到 T5 的嵌入和图像 token。该研究保留所有的文本嵌入(unmasked),随机掩码不同比例的图像 token,并用一个特殊的 [mask] token 替换它们。

超分辨率模型:该研究发现使用级联模型是有益的:首先是生成 16 × 16 潜在映射(对应于 256 × 256 图像)的基础模型,然后是将基础的潜在映射上采样到的超分辨率模型,也就是 64 × 64 的潜在映射(对应于一个 512 × 512 的图像)。

解码器微调:为了进一步提高模型生成精细细节的能力,该研究通过添加更多的残差层和通道来增加 VQGAN 解码器的容量,同时保持编码器容量不变。然后微调新的解码器层,同时冻结 VQGAN 编码器权重、码本和 transformer(即基础模型和超分辨率模型)。

除了以上组件外,Muse 还包含可变掩码比率组件、在推理时迭代并行解码组件等。

实验及结果

如下表所示,与其他模型相比,Muse 缩短了推理时间。

图片

下表为不同模型在 zero-shot COCO 上测量的 FID 和 CLIP 得分:

图片

如下表所示,Muse(632M (base)+268M (super-res) 参数模型)在 CC3M 数据集上训练和评估时得到了 6.06 的 SOTA FID 分数。

图片

下图是 Muse 与 Imagen、DALL-E 2 在相同 prompt 下生成结果的例子。

图片

感兴趣的读者可以阅读论文原文,了解更多研究细节。

以上是推理速度比Stable Diffusion快2倍,生成、修复图像谷歌一个模型搞定,实现新SOTA的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
您必须在无知的面纱后面建立工作场所您必须在无知的面纱后面建立工作场所Apr 29, 2025 am 11:15 AM

在约翰·罗尔斯1971年具有开创性的著作《正义论》中,他提出了一种思想实验,我们应该将其作为当今人工智能设计和使用决策的核心:无知的面纱。这一理念为理解公平提供了一个简单的工具,也为领导者如何利用这种理解来公平地设计和实施人工智能提供了一个蓝图。 设想一下,您正在为一个新的社会制定规则。但有一个前提:您事先不知道自己在这个社会中将扮演什么角色。您最终可能富有或贫穷,健康或残疾,属于多数派或边缘少数群体。在这种“无知的面纱”下运作,可以防止规则制定者做出有利于自身的决策。相反,人们会更有动力制定公

决策,决策……实用应用AI的下一步决策,决策……实用应用AI的下一步Apr 29, 2025 am 11:14 AM

许多公司专门从事机器人流程自动化(RPA),提供机器人以使重复性任务自动化 - UIPATH,在任何地方自动化,蓝色棱镜等。 同时,过程采矿,编排和智能文档处理专业

代理人来了 - 更多关于我们将在AI合作伙伴旁边做什么代理人来了 - 更多关于我们将在AI合作伙伴旁边做什么Apr 29, 2025 am 11:13 AM

AI的未来超越了简单的单词预测和对话模拟。 AI代理人正在出现,能够独立行动和任务完成。 这种转变已经在诸如Anthropic的Claude之类的工具中很明显。 AI代理:研究

为什么同情在AI驱动的未来中对领导者更重要为什么同情在AI驱动的未来中对领导者更重要Apr 29, 2025 am 11:12 AM

快速的技术进步需要对工作未来的前瞻性观点。 当AI超越生产力并开始塑造我们的社会结构时,会发生什么? Topher McDougal即将出版的书Gaia Wakes:

用于产品分类的AI:机器可以总税法吗?用于产品分类的AI:机器可以总税法吗?Apr 29, 2025 am 11:11 AM

产品分类通常涉及复杂的代码,例如诸如统一系统(HS)等系统的“ HS 8471.30”,对于国际贸易和国内销售至关重要。 这些代码确保正确的税收申请,影响每个INV

数据中心的需求会引发气候技术反弹吗?数据中心的需求会引发气候技术反弹吗?Apr 29, 2025 am 11:10 AM

数据中心能源消耗与气候科技投资的未来 本文探讨了人工智能驱动的数据中心能源消耗激增及其对气候变化的影响,并分析了应对这一挑战的创新解决方案和政策建议。 能源需求的挑战: 大型超大规模数据中心耗电量巨大,堪比数十万个普通北美家庭的总和,而新兴的AI超大规模中心耗电量更是数十倍于此。2024年前八个月,微软、Meta、谷歌和亚马逊在AI数据中心建设和运营方面的投资已达约1250亿美元(摩根大通,2024)(表1)。 不断增长的能源需求既是挑战也是机遇。据Canary Media报道,迫在眉睫的电

AI和好莱坞的下一个黄金时代AI和好莱坞的下一个黄金时代Apr 29, 2025 am 11:09 AM

生成式AI正在彻底改变影视制作。Luma的Ray 2模型,以及Runway的Gen-4、OpenAI的Sora、Google的Veo等众多新模型,正在以前所未有的速度提升生成视频的质量。这些模型能够轻松制作出复杂的特效和逼真的场景,甚至连短视频剪辑和具有摄像机感知的运动效果也已实现。虽然这些工具的操控性和一致性仍有待提高,但其进步速度令人惊叹。 生成式视频正在成为一种独立的媒介形式。一些模型擅长动画制作,另一些则擅长真人影像。值得注意的是,Adobe的Firefly和Moonvalley的Ma

Chatgpt是否会慢慢成为AI最大的Yes-Man?Chatgpt是否会慢慢成为AI最大的Yes-Man?Apr 29, 2025 am 11:08 AM

ChatGPT用户体验下降:是模型退化还是用户期望? 近期,大量ChatGPT付费用户抱怨其性能下降,引发广泛关注。 用户报告称模型响应速度变慢,答案更简短、缺乏帮助,甚至出现更多幻觉。一些用户在社交媒体上表达了不满,指出ChatGPT变得“过于讨好”,倾向于验证用户观点而非提供批判性反馈。 这不仅影响用户体验,也给企业客户带来实际损失,例如生产力下降和计算资源浪费。 性能下降的证据 许多用户报告了ChatGPT性能的显着退化,尤其是在GPT-4(即将于本月底停止服务)等旧版模型中。 这

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具