昨天看到一篇英文文章[1],展示了如何用 Python 来实现 RSA 算法,代码的逻辑与前文一文搞懂 RSA 算法一样,不太熟悉 RSA 的朋友可以看一下一文搞懂 RSA 算法,里面对什么是 RSA,RSA 的数学原理进行了说明,并举了一个简单的例子,可以说是全知乎最容易读懂 RSA 的文章了(这话来自读者评论)。
这篇英文提供的代码我运行了下,发现不能加密中文,于是就修改了下加解密的函数,让其支持中文加解密。今天的文章就分享一下如何用 Python 来实现 RSA 加解密的这一过程,帮助你建立 RSA 的直观认识,代码里的随机素数生成算法,也值得我们学习。
咱们先看下效果。
原文:“有内鬼,终止交易”
密文,根本无法破解:
解密之后:
完整代码公众号「Python七号」回复「rsa」获取。
思路:
1)随机找两个质数(素数) p 和 q,p 与 q 越大,越安全,这里选择 1024 位的质数:
p = genprime(1024) q = genprime(1024)
genprime() 函数的实现过程先不说。
2)计算他们的乘积 n = p * q 及 欧拉函数 lambda_n。
n = p * q lambda_n = (p - 1) * (q - 1)
3)随机选择一个整数 e,条件是 1
e = 35537
4)找到一个整数 d,可以使得 e * d 除以 lambda_n 的余数为 1,并返回密钥对。
d = eucalg(e, lambda_n)[0] if d < 0: d += lambda_n return (d, n), (e, n)
eucalg 函数的实现放后面说。
至此,密钥对的生成的函数如下:
def create_keys(): p = genprime(1024) q = genprime(1024) n = p * q lambda_n = (p - 1) * (q - 1) e = 35537 d = eucalg(e, lambda_n)[0] if d < 0: d += lambda_n return (d, n), (e, n)
加密和解密的过程是一样的,公钥加密,私钥解密,反过来也可以,私钥加密,公钥解密,只不过前者我们叫加密,后者我们叫签名。
具体的函数实现如下:
def encrypt_data(data,key): e_data = [] for d in data: e = modpow(d, key[0], key[1]) e_data.append(e) return e_data ## 加密和解密的逻辑完全一样 decrypt_data = encrypt_data
这里面用到了 modpow 函数,它用来计算公式 b^e % n = r 的。
modpow 的定义如下:
def modpow(b, e, n): # find length of e in bits tst = 1 siz = 0 while e >= tst: tst <<= 1 siz += 1 siz -= 1 # calculate the result r = 1 for i in range(siz, -1, -1): r = (r * r) % n if (e >> i) & 1: r = (r * b) % n return r
随机质数的生成函数,其中用到了矩阵乘法和斐波那契数列,可见数学对于算法的重要性。
# matrix multiplication def sqmatrixmul(m1, m2, w, mod): mr = [[0 for j in range(w)] for i in range(w)] for i in range(w): for j in range(w): for k in range(w): mr[i][j] = (mr[i][j] + m1[i][k] * m2[k][j]) % mod return mr # fibonacci calculator def fib(x, mod): if x < 3: return 1 x -= 2 # find length of e in bits tst = 1 siz = 0 while x >= tst: tst <<= 1 siz += 1 siz -= 1 # calculate the matrix fm = [ # function matrix [0, 1], [1, 1] ] rm = [ # result matrix # (identity) [1, 0], [0, 1] ] for i in range(siz, -1, -1): rm = sqmatrixmul(rm, rm, 2, mod) if (x >> i) & 1: rm = sqmatrixmul(rm, fm, 2, mod) # second row of resulting vector is result return (rm[1][0] + rm[1][1]) % mod def genprime(siz): while True: num = (1 << (siz - 1)) + secrets.randbits(siz - 1) - 10; # num must be 3 or 7 (mod 10) num -= num % 10 num += 3 # 3 (mod 10) # heuristic test if modpow(2, num - 1, num) == 1 and fib(num + 1, num) == 0: return num num += 5 # 7 (mod 10) # heuristic test if modpow(2, num - 1, num) == 1 and fib(num + 1, num) == 0: return num
函数的本质在于求下面二元一次方程的解:
e * x - lambda_n * y =1
具体代码:
def eucalg(a, b): # make a the bigger one and b the lesser one swapped = False if a < b: a, b = b, a swapped = True # ca and cb store current a and b in form of # coefficients with initial a and b # a' = ca[0] * a + ca[1] * b # b' = cb[0] * a + cb[1] * b ca = (1, 0) cb = (0, 1) while b != 0: # k denotes how many times number b # can be substracted from a k = a // b # swap a and b so b is always the lesser one a, b, ca, cb = b, a-b*k, cb, (ca[0]-k*cb[0], ca[1]-k*cb[1]) if swapped: return (ca[1], ca[0]) else: return ca
test.py 脚本使用方法:
python test.py make-keys rsakey
公钥保存在 rsakey.pub 中, 私钥保存在 rsakey.priv 中
假如有文件 明文.txt:
python test.py encrypt 明文.txt from rsakey to 密文.txt
将生成 密文.txt
假如有文件 密文.txt:
python test.py decrypt 密文.txt as rsakey to 解密后.txt
将生成 解密后.txt
最后的话
本文分享了 RSA 算法的 Python 的简单实现,可以帮助理解 RSA 算法。
以上是用 Python 来实现 RSA 加解密的详细内容。更多信息请关注PHP中文网其他相关文章!