搜索
首页科技周边人工智能Gary Marcus公开喊话Hinton、马斯克:深度学习就是撞墙了,我赌十万美金

​「如果有人说(深度学习)撞墙了,那么他们只需列出一张清单,列出深度学习无法做到的事情。5 年后,我们就能证明深度学习做到了。」

6 月 1 日,深居简出的 Geoffrey Hinton 老爷子做客 UC 伯克利教授 Pieter Abbeel 的播客节目,俩人进行了长达 90 分钟的对谈,从 Masked auto-encoders、AlexNet 聊到脉冲神经网络等等。

图片

在节目里,Hinton 明确对「深度学习撞墙了」这个观点发起质疑。

「深度学习撞墙了」这个说法,来自知名 AI 学者 Gary Marcus 三月份的一篇文章​。准确地说,他认为「纯粹的端到端深度学习」差不多走到尽头了,整个 AI 领域必须要寻找新出路。

出路在哪儿?按照 Gary Marcus 的想法,符号处理将大有前途。不过这个观点一向没有受到社区重视,之前 Hinton 甚至说过:「在符号处理方法上的任何投资都是一个巨大的错误。」

Hinton 在播客里的公开「反驳」显然引起了 Gary Marcus 的注意。

就在十几个小时前,Gary Marcus 在推特上发出了一封给 Geoffrey Hinton 的公开信:

图片

信里是这么说的:「我注意到,Geoffrey Hinton 正在寻找一些挑战性的目标。在 Ernie Davis 的帮助下,我确实已经写下了这样一个清单,上周我还向马斯克发出了一个 100000 美元的赌约。」

这里又有马斯克什么事?原因还要从 5 月底的一条推特说起。

与马斯克的十万美金赌约

一直以来,人们所理解的 AGI 是太空漫游(HAL)和钢铁侠(JARVIS)等电影中描述的那种 AI。与当前为特定任务训练的 AI 不同,AGI 更像人脑,可以学习如何完成任务。

大多数专家认为 AGI 需要几十年才能实现,而有些人甚至认为这个目标永远不可能实现。在对该领域专家的调查中,预估到 2099 年将有 50% 的机会实现 AGI。

相比之下,马斯克显得更加乐观,甚至在推特上公开表达:「2029 年是关键的一年,如果那时我们还没有实现 AGI,我会感到惊讶。希望火星上的人们也是如此。」

图片

表示并不认同的 Gary Marcus 很快反问:「你愿意赌多少钱?」

图片

虽然马斯克并没有回复这条提问,但 Gary Marcus 继续表示,可以在 Long Bets 组局,金额是十万美元。

在 Gary Marcus 看来,马斯克的相关观点不大靠谱:「比如你在 2015 年说过,实现完全自动驾驶的汽车还需要两年时间,从那以后,你几乎每年都说一遍同样的话,可现在完全自动驾驶仍未实现。」

他还在博客中写下了五个检验 AGI 是否实现的标准,作为打赌的内容:

  • 2029 年,AI 无法看懂电影然后准确告诉你正在发生的事情(人物是谁、他们的冲突和动机是什么等);
  • 2029 年,AI 无法阅读小说并可靠地回答有关情节、人物、冲突、动机等的问题;
  • 2029 年,AI 无法在任何厨房中担任称职的厨师;
  • 2029 年,AI 无法通过自然语言规范或与非专家用户的交互可靠地构建超过 10000 行的无错误代码(将现有库中的代码粘合在一起不算数);
  • 2029 年,AI 无法从以自然语言编写的数学文献中任意取证,并将其转换为适合符号验证的符号形式。

图片

「这是我的建议,如果你(或任何其他人)在 2029 年设法完成至少三个,就算你赢了。Deal?十万美元如何?」

在更多人的追捧下,这个赌约的金额已经上升到了 50 万美元。不过,截至目前,马斯克再无回复。

Gary Marcus:AGI 并不像你想象的「近在眼前」

6 月 6 日,Gary Marcus 在《科学美国人》发表文章,重申了自己的观点:AGI 并非近在眼前。

图片

对于普通人来说,人工智能领域似乎正在取得巨大进步。在媒体的报道中:OpenAI 的 DALL-E 2 似乎可以将任何文本转换成图像,GPT-3 无所不知,DeepMind 5 月发布的 Gato 系统在每一项任务上都性能良好......DeepMind 的一位高级管理人员甚至吹嘘已开始寻求通用人工智能 (AGI)、AI 具有与人类一样的智能水平......

别被骗了。机器有一天可能会和人一样聪明,甚至可能更聪明,但远不是现在。要创造真正理解和推理现实世界的机器,还有大量的工作要做。我们现在真正需要的是更少的吹捧姿态和更多的基础研究。

可以肯定的是,人工智能确实在某些方面取得了进步——合成图像看起来越来越逼真,语音识别可以在嘈杂环境中工作——但我们距离通用的人类水平 AI 还有很长的路要走,例如人工智能现在还不能理解文章和视频的真正含义,也不能处理意外障碍和中断。我们仍然面临 AI 多年来一直存在的挑战——让人工智能变得可靠。

以 Gato 为例,给定任务:为投手投掷棒球的图像加上标题,系统返回三个不同的答案:「一名棒球运动员在棒球场上投球」、「一名男子向棒球场上的投手投掷棒球」和「一名棒球运动员在击球,一名接球手在一场棒球比赛」。第一个答案是正确的,而其他两个答案似乎包含图像中看不到的其他球员。这说明 Gato 系统并不知道图像中的实际内容,而是了解大致相似图像的典型内容。任何棒球迷都能看出这是刚刚投球的投手——虽然我们预计附近有接球手和击球手,但他们显然没有出现在图像中。

图片

同样,DALL-E 2 会混淆这两种位置关系:「蓝色立方体顶部的红色立方体」和「红色立方体顶部的蓝色立方体」。类似地,5 月谷歌发布的 Imagen 模型无法区分「宇航员骑马」和「马骑宇航员」。

图片

当 DALL-E 这样的系统出错时,你可能还觉得有些滑稽,但有一些 AI 系统如果出错,就会产生非常严重的问题。例如,一辆自动驾驶的特斯拉最近直接向路中间拿着停车标志的工人开去,人类司机干预后才能减速。该自动驾驶系统可以单独识别人类和停车标志,但遇到两者的不寻常组合时就未能减速。

所以,很不幸,AI 系统仍然不可靠,并且难以迅速适应新环境。

Gato 在 DeepMind 报告的所有任务上都表现出色,但很少能像其他当代系统一样。GPT-3 经常写出流利的散文,但仍然难以掌握基本的算术,而且它对现实的了解太少,很容易产生「一些专家认为吃袜子有助于大脑改变状态」之类令人匪夷所思的句子。

这背后存在的问题是,人工智能领域最大的研究团队不再是学术机构,而是大型科技企业。与大学不同,企业没有公平竞争的动力。他们的新论文没有经过学术审查就通过新闻发布,引导媒体报道,并回避同行评审。我们所获得的信息只是企业本身想让我们知道的事情。

在软件行业,有一个专门的词代表这种商业策略「demoware」,指软件的设计很适合展示,但不一定适合现实世界。

而这样营销的 AI 产品,要么无法顺利发布,要么在现实中一塌糊涂。

深度学习提高了机器识别数据模式的能力,但它存在三大缺陷:学习的模式是肤浅的,而不是概念性的;产生的结果难以解释;很难泛化。正如哈佛计算机科学家 Les Valiant 所指出的:「未来的核心挑战是统一 AI 学习和推理的形式。」

目前,企业追求的是超越基准,而不是创造新的想法,他们用已有的技术勉强进行小幅改进,而不是停下来思考更基本的问题。

我们需要有更多的人询问「如何构建可以同时学习和推理的系统」等基本问题,而不是追求华丽的产品展示。

这场关于 AGI 的争辩远未到达终点,也有其他研究者陆续加入。研究者 Scott Alexander 就在博客中指出,Gary Marcus 是个传奇,过去几年里写的东西或多或少不完全准确,但仍然有其价值。

比如 Gary Marcus 此前曾经批判过 GPT-2 的一些问题,八个月后,GPT-3 诞生时,这些问题都得以解决。但 Gary Marcus 并没有对 GPT-3 留情,甚至写了一篇文章:「OpenAI 的语言生成器不知道它在说什么。」

本质上说,一个观点目前而言是对的:「Gary Marcus 以嘲笑大型语言模型为噱头,但之后这些模型会变得越来越好,如果这个趋势持续下去,AGI 很快就会实现。」​

以上是Gary Marcus公开喊话Hinton、马斯克:深度学习就是撞墙了,我赌十万美金的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
及时工程中的思想图是什么及时工程中的思想图是什么Apr 13, 2025 am 11:53 AM

介绍 在迅速的工程中,“思想图”是指使用图理论来构建和指导AI的推理过程的新方法。与通常涉及线性S的传统方法不同

优化您的组织与Genai代理商的电子邮件营销优化您的组织与Genai代理商的电子邮件营销Apr 13, 2025 am 11:44 AM

介绍 恭喜!您经营一家成功的业务。通过您的网页,社交媒体活动,网络研讨会,会议,免费资源和其他来源,您每天收集5000个电子邮件ID。下一个明显的步骤是

Apache Pinot实时应用程序性能监视Apache Pinot实时应用程序性能监视Apr 13, 2025 am 11:40 AM

介绍 在当今快节奏的软件开发环境中,确保最佳应用程序性能至关重要。监视实时指标,例如响应时间,错误率和资源利用率可以帮助MAIN

Chatgpt击中了10亿用户? Openai首席执行官说:'短短几周内翻了一番Chatgpt击中了10亿用户? Openai首席执行官说:'短短几周内翻了一番Apr 13, 2025 am 11:23 AM

“您有几个用户?”他扮演。 阿尔特曼回答说:“我认为我们上次说的是每周5亿个活跃者,而且它正在迅速增长。” “你告诉我,就像在短短几周内翻了一番,”安德森继续说道。 “我说那个私人

pixtral -12b:Mistral AI'第一个多模型模型 - 分析Vidhyapixtral -12b:Mistral AI'第一个多模型模型 - 分析VidhyaApr 13, 2025 am 11:20 AM

介绍 Mistral发布了其第一个多模式模型,即Pixtral-12b-2409。该模型建立在Mistral的120亿参数Nemo 12B之上。是什么设置了该模型?现在可以拍摄图像和Tex

生成AI应用的代理框架 - 分析Vidhya生成AI应用的代理框架 - 分析VidhyaApr 13, 2025 am 11:13 AM

想象一下,拥有一个由AI驱动的助手,不仅可以响应您的查询,还可以自主收集信息,执行任务甚至处理多种类型的数据(TEXT,图像和代码)。听起来有未来派?在这个a

生成AI在金融部门的应用生成AI在金融部门的应用Apr 13, 2025 am 11:12 AM

介绍 金融业是任何国家发展的基石,因为它通过促进有效的交易和信贷可用性来推动经济增长。交易的便利和信贷

在线学习和被动攻击算法指南在线学习和被动攻击算法指南Apr 13, 2025 am 11:09 AM

介绍 数据是从社交媒体,金融交易和电子商务平台等来源的前所未有的速度生成的。处理这种连续的信息流是一个挑战,但它提供了

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),