搜索
首页科技周边人工智能TensorFlow.js 在浏览器上也能搞定机器学习!

在机器学习飞速发展的今天,各种机器学习平台层出不穷,为了满足不同业务场景的需求,可以将机器学习的模型分别部署到 Android、iOS、Web 浏览器,让模型在端侧能够进行推演,从而发挥模型的潜能。其中TensorFlow.js 是 TensorFlow 的 JavaScript 版本,支持 GPU 硬件加速,可以运行在 Node.js 或浏览器环境中。它不但支持完全基于JavaScript 从头开发、训练和部署模型,也可以用来运行已有的 Python 版 TensorFlow 模型,或者基于现有的模型进行继续训练。

TensorFlow.js 优势

TensorFlow.js 可以让使用者在浏览器中加载 TensorFlow模型,让用户通过本地的CPU/GPU 资源进行机器学习推演。浏览器中进行机器学习,相对比与服务器端来讲,将拥有以下四大优势:

1. 不需要安装软件或驱动(打开浏览器即可使用);

2. 可以通过浏览器进行更加方便的人机交互;

3. 可以通过手机浏览器,调用手机硬件的各种传感器(如:GPS、加速度传感器、摄像头等);

4. 用户的数据可以无需上传到服务器,在本地即可完成所需操作。

TensorFlow.js 架构

上面介绍了TensorFlow.js 的优势,这里让我们来了解一下TensorFlow.js 的架构。如图1 所示,TensorFlow.js 架构包括Core API 和 Layers API(图的上半部分)。其中Layers API 提供更高层次的接口,例如类似KerasAPI的语法结构,这些语法结构的目的是通过更加高粒度的抽象让开发人员使用JavaScript 便捷地进行机器学习的开发。而CoreAPI主要包括TensorFlow.js 所提供的核心功能,例如Tensor的创建、数据的运算、内存管理等。同时CoreAPI 还提供了工具将Python中的机器学习模型转换成浏览器能够使用的JSON格式,方便在JavaScript中能够复用已有的模型。因此,CoreAPI能够在浏览器端运行,可以使用WebGL进行GPU加速,当然它也可以在Node.js 上运行,依赖具体的运行环境通过GPU、TPU进行加速。

TensorFlow.js 在浏览器上也能搞定机器学习!

图1 TensorFlow.js 架构

TensorFlow.js 进行线性回归的案例

前面说了TensorFlow.js 的优势和架构,这里为了大家能对TensorFlow.js 有更深的了解,我们举一个简单的线性回归例子来看看在浏览器端是如何实现机器学习的训练和推演的。

假设我们需要构建 y = ax1+bx2+c 的线性模型,如图2 所示,需要如下几个步骤完成:

1. 下载TensorFlow.js 文件

2. 训练数据和测试数据

3. 构建模型

4. 训练模型

5. 模型应用

TensorFlow.js 在浏览器上也能搞定机器学习!

图2 TensorFlow.js 构建线性回归模型

从这5 个步骤可以看出基本过程和在Python中构建模型是一样的,除了第一步需要下载TensorFlow.js 的文件以外。

如图3 所示,为了加载TensorFlow.js文件,我们需要在页面的head 标签中引入script,其中文件tf.min.js 已经部署到了TensorFlow 的CDN 服务器了,我们只需要引用该文件即可。

TensorFlow.js 在浏览器上也能搞定机器学习!

图3 引用TensorFlow.js 文件

为了保证TensorFlow.js文件被正确引入,如图4所示,打开浏览器并开启开发者工具,在Console中输入tf.version 从而可以获取TensorFlow对应的tfjs-core,tfjs-backend-cpu等信息,说明文件引入成功了。由于TensorFlow.js 文件中包含了TensorFlow的运算库,因此这里需要确保该文件被正确加载了。

TensorFlow.js 在浏览器上也能搞定机器学习!

图 4 确认TensorFlow.js 文件被正确引入

有了对TensorFlow.js 文件的加载之后,我们就可以在html中写入机器学习的代码了。 如图5 所示,在script标签中写入如下代码,其中async 的doTraining 方法是用来对模型进行训练的,epoch 是500 次,这里使用async 的目的是不让网页的其他操作阻塞。在函数内部调用了model 中的fit 方法对模型进行拟合,输入参数是xs和ys,在回调函数callbacks 中输出拟合结果,并打印loss 的损失函数。

接下来就是来构造model了,这里使用了tf.sequential();构建模型,为了构建y = ax1+bx2+c 模型,这里需要构建一个神经元,这个神经元有两个输入和一个输出。

所以,通过model.add 添加一个dense 层,定义units:1,也就是一个神经元,inputShape:[2],输入是一个二维。有了模型之后,通过model.complie进行编译模型,这里使用了meanSquareError的损失函数以及optimizer为sgd。最后通过model的summary方法把整个神经元网络打印出来。紧接着在dataset环节,我们准备了xs 、ys作为输入,testData_x作为测试数据。最后,调用doTraining(model)对模型进行训练,并使用predict方法对结果进行预测。

TensorFlow.js 在浏览器上也能搞定机器学习!

图5 在浏览器中训练模型

将上述文件保存为html文件以后重新打开,大约1-2秒以后就可以看到图6 的结果。右边是开发者工具中打印出每次epoch 获得的loss 结果,可以看出随着训练的进程loss 损失函数是越来越小的。同时最终得到了Tensor的结果为 15.5082932 的预测结果。

TensorFlow.js 在浏览器上也能搞定机器学习!

图6 运行结果

TensorFlow.js 模型复用

有了上面简单的例子,我们可以在浏览器端轻松地巡检机器学习模型,但是模型的训练本事是需要耗费资源,同时也需要较长的训练时间。那么,我们能否将已经训练好的模型直接拿到浏览器进行预测和推演呢?答案是肯定的。

模型的复用一般而言有两种方式,第一种是使用开发者自己在Python中创建好的模型,通过TensroFlow提供的工具,将模型保存成tfjs格式并将其在浏览器中使用。另一种是直接调用TensorFlow 提供的模型。

TensorFlow.js 在浏览器上也能搞定机器学习!

图7 模型复用

开发自己定义的模型

如图8 所示,我们在python中进行模型构建、训练和保存。构建模型、神经元网络、设置优化器、损失函数以及数据准备等步骤,这里就不赘述。在模型训练完毕之后通过save_model 方法对模型进行保存。

TensorFlow.js 在浏览器上也能搞定机器学习!

图 8 开发自己的模型

有了模型,接着就需要使用TensorFlow.js 提供的工具对模型进行转换,才能让该模型在浏览器中被使用。

这里使用如下命令安装TensorFlow.js的工具。

pip install tensorflowjs
tensorflwjs_converter --input_format=keras_saved_model ./saved_model/ ./model/

这里使用了tensorflwjs_converter 命令对模型进行转换,input的格式是keras_saved_model,源文件地址是./saved_model/,目标文件地址是./model/,回车执行之后就可以在目标文件地址看到转换以后的文件了。

在浏览器中只需要引用这个转化好的模型文件,如图9 所示,在script中的run方法直接引用了模型文件model.json使用loadLayersModel装载模型,设置了input 之后就使用predict方法对模型进行预测了。

TensorFlow.js 在浏览器上也能搞定机器学习!

图9 使用转换后的模型

TensorFlow 提供的模型

上面我们演示了可以使用自己训练好的机器学习模型,这里也可以通过https://www.php.cn/link/ff82db7535530637af7f8a96284b3459查找TensorFlow 提供的模型。

如图10 所示,TensorFlow 已经为一些业务场景量身打造了一些模型,例如:人像深度估测、图像分类、对象检测、身体分割、姿势检测、文本恶意检测等等。想了解如何进一步在生产场景中部署模型的同学,也可以抽空看看谷歌开发者专家对 TensorFlow 部署功能的讲解和常见问题的解答:https://www.php.cn/link/bb96ff7f5c9505fd971126ecd171bec2

TensorFlow.js 在浏览器上也能搞定机器学习!

图 10 TensorFlow 提供的模型

通过学习TensorFlow 官方在线课程,我从一个机器学习小白成长为一个经验丰富的机器学习老手。从《TensorFlow入门实操课程》《TensorFlow入门课程 — 部署篇》课程中,我学会了如何对机器学习模型进行保存转换,同时还可以根据不同的应用场景将机器学习模型部署到Android、iOS、浏览器以及服务端。TensorFlow 的平台就好像一个万花筒,让我看到了五彩缤纷的应用项目,同时也了解了机器学习建模和预测的底层逻辑。如果你也想让机器学习的能力有所提高,可以一起学习《TensorFlow入门课程 — 部署篇》,并留下你对课程的评价,现在报名参与,还有机会赢得官方精美礼品哦!

TensorFlow.js 在浏览器上也能搞定机器学习!

张云波,活跃的IT网红讲师,拥有学员31w+,国内早期开始和发布苹果Swift、安卓Kotlin、微信小程序、区块链技术的讲师之一。主攻前端开发、iOS开发、Android开发、Flutter开发、区块链Dapp开发,有丰富的大公司和海外工作经验。

以上是TensorFlow.js 在浏览器上也能搞定机器学习!的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
一个提示可以绕过每个主要LLM的保障措施一个提示可以绕过每个主要LLM的保障措施Apr 25, 2025 am 11:16 AM

隐藏者的开创性研究暴露了领先的大语言模型(LLM)的关键脆弱性。 他们的发现揭示了一种普遍的旁路技术,称为“政策木偶”,能够规避几乎所有主要LLMS

5个错误,大多数企业今年将犯有可持续性5个错误,大多数企业今年将犯有可持续性Apr 25, 2025 am 11:15 AM

对环境责任和减少废物的推动正在从根本上改变企业的运作方式。 这种转变会影响产品开发,制造过程,客户关系,合作伙伴选择以及采用新的

H20芯片禁令震撼中国人工智能公司,但长期以来一直在为影响H20芯片禁令震撼中国人工智能公司,但长期以来一直在为影响Apr 25, 2025 am 11:12 AM

最近对先进AI硬件的限制突出了AI优势的地缘政治竞争不断升级,从而揭示了中国对外国半导体技术的依赖。 2024年,中国进口了价值3850亿美元的半导体

如果Openai购买Chrome,AI可能会统治浏览器战争如果Openai购买Chrome,AI可能会统治浏览器战争Apr 25, 2025 am 11:11 AM

从Google的Chrome剥夺了潜在的剥离,引发了科技行业中的激烈辩论。 OpenAI收购领先的浏览器,拥有65%的全球市场份额的前景提出了有关TH的未来的重大疑问

AI如何解决零售媒体的痛苦AI如何解决零售媒体的痛苦Apr 25, 2025 am 11:10 AM

尽管总体广告增长超过了零售媒体的增长,但仍在放缓。 这个成熟阶段提出了挑战,包括生态系统破碎,成本上升,测量问题和整合复杂性。 但是,人工智能

'AI是我们,比我们更多''AI是我们,比我们更多'Apr 25, 2025 am 11:09 AM

在一系列闪烁和惰性屏幕中,一个古老的无线电裂缝带有静态的裂纹。这堆积不稳定的电子设备构成了“电子废物土地”的核心,这是身临其境展览中的六个装置之一,&qu&qu

Google Cloud在下一个2025年对基础架构变得更加认真Google Cloud在下一个2025年对基础架构变得更加认真Apr 25, 2025 am 11:08 AM

Google Cloud的下一个2025:关注基础架构,连通性和AI Google Cloud的下一个2025会议展示了许多进步,太多了,无法在此处详细介绍。 有关特定公告的深入分析,请参阅我的文章

IR的秘密支持者透露,Arcana的550万美元的AI电影管道说话,Arcana的AI Meme,Ai Meme的550万美元。IR的秘密支持者透露,Arcana的550万美元的AI电影管道说话,Arcana的AI Meme,Ai Meme的550万美元。Apr 25, 2025 am 11:07 AM

本周在AI和XR中:一波AI驱动的创造力正在通过从音乐发电到电影制作的媒体和娱乐中席卷。 让我们潜入头条新闻。 AI生成的内容的增长影响:技术顾问Shelly Palme

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中