搜索
首页后端开发Python教程这五个实用但鲜为人知的 Python 模块,你知道么?

这五个实用但鲜为人知的 Python 模块,你知道么?

正文

Python 标准库有超过 200 个模块,程序员可以在他们的程序中导入和使用。虽然普通程序员对其中许多模块都有一些经验,但很可能有一些好用的模块他们仍然没有注意到。

我发现其中许多模块都包含了在各个领域都非常有用的函数。比较数据集、协作其他函数以及音频处理等都可以仅使用 Python 就可以自动完成。

因此,我编制了一份您可能不知道的 Python 模块的候选清单,并对这几个模块进行了适当的解释,以便您在将来理解和使用它们。

所有这些模块都有不同的函数和类。本文包含了几个鲜为人知的函数和类,因此即使您听说过这些模块,也可能不知道它们的某些方面和用途。

1. difflib

difflib 是一个专注于比较数据集(尤其是字符串)的 Python 模块。为了具体了解,您可以使用此模块完成的几件事,让我们检查一下它的一些最常见的函数。

SequenceMatcher

SequenceMatcher 是一个比较两个字符串并根据它们的相似性返回数据的函数。通过使用 ratio(),我们将能够根据比率/百分比来量化这种相似性。

语法:

SequenceMatcher(None, string1, string2)

下面这个个简单的例子展示了该函数的作用:

from difflib import SequenceMatcher

phrase1 = "Tandrew loves Trees."

phrase2 = "Tandrew loves to mount Trees."

similarity = SequenceMatcher(None, phrase1, phrase2)

print(similarity.ratio())

# Output: 0.8163265306122449

get_close_matches

接下来是 get_close_matches,该函数返回与作为参数传入的字符串最接近的匹配项。

语法:

get_close_matches(word, possibilities, result_limit, min_similarity)

下面解释一下这些可能有些混乱的参数:

  • word 是函数将要查看的目标单词。
  • possibilities 是一个数组,其中包含函数将要查找的匹配项并找到最接近的匹配项。
  • result_limit 是返回结果数量的限制(可选)。
  • min_similarity 是两个单词需要具有的最小相似度才能被函数视为返回值(可选)。

下面是它的一个使用示例:

from difflib import get_close_matches
word = 'Tandrew'
possibilities = ['Andrew', 'Teresa', 'Kairu', 'Janderson', 'Drew']
print(get_close_matches(word, possibilities))
# Output: ['Andrew']

除此之外还有几个是您可以查看的属于 Difflib 的其他一些方法和类:unified_diff、Differ和 diff_bytes

2. sched

sched 是一个有用的模块,它以跨平台工作的事件调度为中心,与 Windows 上的任务调度程序等工具形成鲜明对比。大多数情况下,使用此模块时,都会使用 schedular 类。

更常见的 time 模块通常与 sched 一起使用,因为它们都处理时间和调度的概念。

创建一个 schedular 实例:

schedular_name = sched.schedular(time.time, time.sleep)

可以从这个实例中调用各种方法。

  •  调用 run() 时,调度程序中的事件/条目会按照顺序被调用。在安排完事件后,此函数通常出现在程序的最后。另外,搜索公众号Linux就该这样学后台回复“git书籍”,获取一份惊喜礼包。
  •  enterabs() 是一个函数,它本质上将事件添加到调度程序的内部队列中。它按以下顺序接收几个参数:
  •  事件执行的时间
  •  活动优先级
  •  事件本身(一个函数)
  •  事件函数的参数
  •  事件的关键字参数字典

下面是一个示例,说明如何一起使用这两个函数:

import sched
import time
def event_notification(event_name):
print(event_name + " has started")
my_schedular = sched.scheduler(time.time, time.sleep)
closing_ceremony = my_schedular.enterabs(time.time(), 1, event_notification, ("The Closing Ceremony", ))
my_schedular.run()
# Output: The Closing Ceremony has started

还有几个扩展 sched 模块用途的函数:cancel()、enter() 和 empty()。

3. binaascii

binaascii 是一个用于在二进制和 ASCII 之间转换的模块。

b2a_base64 是 binaascii 模块中的一种方法,它将 base64 数据转换为二进制数据。下面是这个方法的一个例子:

import base64
import binascii
msg = "Tandrew"
encoded = msg.encode('ascii')
base64_msg = base64.b64encode(encoded)
decode = binascii.a2b_base64(base64_msg)
print(decode)
# Output: b'Tandrew'

该段代码应该是不言自明的。简单地说,它涉及编码、转换为 base64,以及使用 b2a_base64 方法将其转换回二进制。

以下是属于 binaascii 模块的其他一些函数:a2b_qp()、b2a_qp() 和 a2b_uu()。

4. tty

tty 是一个包含多个实用函数的模块,可用于处理 tty 设备。以下是它的两个函数:

  •  setraw() 将其参数 (fd) 中文件描述符的模式更改为 raw。
  •  setcbreak() 将其参数 (fd) 中的文件描述符的模式更改为 cbreak。

由于需要使用 termios 模块,该模块仅适用于 Unix,例如在上述两个函数中指定第二个参数(when=termios.TCSAFLUSH)。

5. weakref

weakref 是一个用于在 Python 中创建对对象的弱引用的模块。

弱引用是不保护给定对象不被垃圾回收机制收集的引用。

以下是与该模块相关的两个函数:

  • getweakrefcount() 接受一个对象作为参数,并返回引用该对象的弱引用的数量。
  • getweakrefs() 接受一个对象并返回一个数组,其中包含引用该对象的所有弱引用。

weakref 及其函数的使用示例:

import weakref
class Book:
def print_type(self):
print("Book")
lotr = Book
num = 1
rcount_lotr = str(weakref.getweakrefcount(lotr))
rcount_num = str(weakref.getweakrefcount(num))
rlist_lotr = str(weakref.getweakrefs(lotr))
rlist_num = str(weakref.getweakrefs(num))
print("number of weakrefs of 'lotr': " + rcount_lotr)
print("number of weakrefs of 'num': " + rcount_num)
print("Weakrefs of 'lotr': " + rlist_lotr)
print("Weakrefs of 'num': " + rlist_num)
# Output:
# number of weakrefs of 'lotr': 1
# number of weakrefs of 'num': 0
# Weakrefs of 'lotr': [<weakref at 0x10b978a90; to 'type' at #0x7fb7755069f0 (Book)>]
# Weakrefs of 'num': []

输出从输出的函数返回值我们可以看到它的作用。由于 num 没有弱引用,因此 getweakrefs() 返回的数组为空。扩展:接私活儿

以下是与 weakref 模块相关的一些其他函数:ref()、proxy() 和 _remove_dead_weakref()。

回顾

  • Difflib 是一个用于比较数据集,尤其是字符串的模块。例如,SequenceMatcher 可以比较两个字符串并根据它们的相似性返回数据。
  • sched 是与 time 模块一起使用的有用工具,用于使用 schedular 实例安排事件(以函数的形式)。例如,enterabs() 将一个事件添加到调度程序的内部队列中,该队列将在调用 run() 函数时运行。

binaascii 可在二进制和 ASCII 之间转换以编码和解码数据。b2a_base64 是 binaascii 模块中的一种方法,它将 base64 数据转换为二进制数据。

tty 模块需要配合使用 termios 模块,并处理 tty 设备。它仅适用于 Unix。

weakref 用于弱引用。它的函数可以返回对象的弱引用,查找对象的弱引用数量等。其中非常使用的函数之一是 getweakrefs(),它接受一个对象并返回一个该对象包含的所有弱引用的数组。

要点

这些函数中的每一个都有其各自的用途,每一个都有不同程度的有用性。了解尽可能多的 Python 函数和模块非常重要,以便保持稳定的工具库,您可以在编写代码时快速使用。

无论您的编程专业知识水平如何,您都应该不断学习。多投入一点时间可以为您带来更多价值,并为您节省更多未来时间。

以上是这五个实用但鲜为人知的 Python 模块,你知道么?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
Python的科学计算中如何使用阵列?Python的科学计算中如何使用阵列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何处理同一系统上的不同Python版本?您如何处理同一系统上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通过使用pyenv、venv和Anaconda来管理不同的Python版本。1)使用pyenv管理多个Python版本:安装pyenv,设置全局和本地版本。2)使用venv创建虚拟环境以隔离项目依赖。3)使用Anaconda管理数据科学项目中的Python版本。4)保留系统Python用于系统级任务。通过这些工具和策略,你可以有效地管理不同版本的Python,确保项目顺利运行。

与标准Python阵列相比,使用Numpy数组的一些优点是什么?与标准Python阵列相比,使用Numpy数组的一些优点是什么?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基于基于duetoc的iMplation,2)2)他们的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函数函数函数函数构成和稳定性构成和稳定性的操作,制造

阵列的同质性质如何影响性能?阵列的同质性质如何影响性能?Apr 25, 2025 am 12:13 AM

数组的同质性对性能的影响是双重的:1)同质性允许编译器优化内存访问,提高性能;2)但限制了类型多样性,可能导致效率低下。总之,选择合适的数据结构至关重要。

编写可执行python脚本的最佳实践是什么?编写可执行python脚本的最佳实践是什么?Apr 25, 2025 am 12:11 AM

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

Numpy数组与使用数组模块创建的数组有何不同?Numpy数组与使用数组模块创建的数组有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,内存效率段

Numpy数组的使用与使用Python中的数组模块阵列相比如何?Numpy数组的使用与使用Python中的数组模块阵列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模块与Python中的数组有何关系?CTYPES模块与Python中的数组有何关系?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境