在 Windows 上怎样做 Python 开发?是像大神那样使用纯文本编辑器,还是用更加完善的 IDE?到底是用自带的命令行工具,还是需要装新的 Terminal?
使用 Windows 系统一大好处是它的应用太丰富了,甚至强大的 GPU 也能在闲暇时间做点其它「工作」。然而与 Linux 或 macOS 不同,在 Windows 上做开发总会遇到很多挑战,不论是文件编码、环境控制还是项目编译,开发过程中总会有一些神奇的收获。
这些对于初学者来说尤其突出:我们在安装某个库时可能出现各种依赖项错误,我们在读写文本时出现各种编码错误等等。
那么在 Windows 上如何做 Python 开发呢?相信大神们都会有自己的解决方案,但本文希望介绍微软官方发布的 Terminal 和 Visual Studio Code,希望它们能构建更流畅的 Windows 开发体验。
Visual Studio Code 是程序员可以使用的最酷的代码编辑器之一,是一个可在所有平台上使用的开源、可扩展和轻量级编辑器。正是这些品质使微软的 VS Code 大受欢迎,并成为 Python 开发的绝佳平台。可能很多读者都比较熟悉 PyCharm 与 Jupyter Notebook 等常见的 Python IDE,但 VS Code 一样不会令你失望。
在本文中,你将学习到微软 Terminal 和 Visual Studio Code 的特性,包括:
- 什么是微软 Terminal
- 微软 Terminal 效果怎么样
- 安装 Visual Studio Code
- 发现并安装 Python 扩展
- 编写简单的 Python 应用程序
- 了解如何在 VS Code 中运行和调试现有 Python 程序
- 将 VS Code 连接到 Git 和 GitHub,与全世界分享你的代码
我们假设你了解 Python 开发,并且已经在系统上安装了某种版本的 Python(如 Python 2.7、Python 3.6/3.7、Anaconda 或其他)。由于 VS Code 可兼容所有主流平台,因此你可能会看到略有不同的 UI 元素,并且可能需要修改某些命令。
新兴的微软 Terminal
Windows Terminal 是一个开源终端应用程序,由微软在今年 5 月份的 Build 开发者大会上推出。MS Terminal 支持 Command Prompt 和 PowerShell 的所有优点,基本上命令行已经可以和 Linux 相融合了,除此之外运行命令提示符也是没问题的。
在 MS Terminal 开源后,GitHub 的 Star 量增长得非常快,目前已经超过了 5 万。这足以说明这个项目非常受关注,在社区的开源改进下,这个工具一定挺好用。
MS Terminal 开源地址:https://github.com/microsoft/terminal
当然,目前 MS Terminal 已经可以直接下载安装程序了,社区的体验也非常不错。因此如果我们在 Windows 上做 Python 开发,命令行工具就可以采用 MS Terminal,它能解决很大一部分的包安装、环境控制等问题。
MS Terminal 的效果怎么样
MS Terminal 最核心的功能就是支持多条选项卡,且每一个选项卡都可以连接到命令行 shell 或应用,例如 Command Prompt 或通过 SSH 访问树莓派等。下图展示了这种多选项卡的支持情况:
此外,除了功能外,更重要的就是颜值,就像我们常用 zsh 来提供更美观的命令行一样。虽然 zsh 目前的 GitHub 收藏量已经达到 9.4 万了,但 ReadMe 文档清楚地写着它最好用于 macOS 或 Linux。而新发布的 MS Terminal 不论在界面还是在文字风格,都以前都强了很多。
背景透明度、文字高亮都可以自行定义,还能定义 emoji 等符号。如下为基本的展示,我们可以根据自己的需要调整整个界面。
整个项目还在积极开发中,很多功能也都在完善与增加。不过既然是微软官方维护的开源项目,那么我们还是非常有信心的,至少在命令行部分可以降低开发过程中的各种报错。当然如果读者在 Windows 上有更好的命令行工具推荐,也可以在文末留言。
安装和配置 VS Code
前面介绍了开发中必不可缺的命令行工具,下面我们该聊一聊 VS Code 了,它是支持 Python 开发的核心工具。下面我们从最初的安装、环境管理到编写、测试、发布代码,介绍我们该如何优雅地使用 VS Code。
在任何平台上都可以安装 Visual Studio Code。官网提供了 Windows、Mac 和 Linux 的完整安装说明,并且会每月更新编辑器,其中包含新功能和错误修正。你可以在 Visual Studio Code 网站上找到所有安装内容:
此外,除名称相近外,Visual Studio Code(简称 VS Code)与基于 Windows 的更大规模的 Visual Studio 几乎没有其他相同的地方。
Visual Studio Code 本身支持多种语言,并且它的一个扩展模型具有支持其他组件的丰富生态系统。VS Code 每月更新,你可以在微软 Python 博客中了解更新信息。任何用户都可以克隆微软的 VS Code Github 仓库并贡献自己的代码。
VS Code UI 已有详细记录,这里不予赘述:
Python 扩展
如上所述,VS Code 通过详细记录的扩展模型支持多种编程语言的开发。Python 扩展使用户可以在 Visual Studio Code 中进行 Python 开发,具有以下特征:
- 既支持 Python 3.4 及更高版本,也支持 Python 2.7 版本
- 使用 IntelliSense 完成代码补全
- Linting
- 调试支持
- 代码片段支持
- 单元测试支持
- 自动使用 conda 和虚拟环境
- 在 Jupyter 环境和 Jupyter 笔记本中进行代码编辑
Visual Studio Code 扩展不仅仅具有编程功能:
- Keymaps 允许已经熟悉 Atom,Sublime Text,Emacs,Vim,PyCharm 或其他环境的用户更加容易上手。
- 主题自定义 UI,无论您喜欢在明亮,黑暗或更丰富多彩的地方进行编码。
- 语言包提供本地化体验。
以下是比较有用的一些其他扩展和设置:
- GitLens 直接在编辑视窗中提供了大量有用的 Git 功能,包括非责任注释和存储库开发功能。
- 通过从菜单中选择 File, Auto Save,可以轻松进行自动保存。默认延迟时间为 1000 毫秒,也可以重新配置。
- Settings Sync 允许用户借助 GitHub 在不同的装置中同步自己的 VS Code 设置。如果用户在不同的计算机上工作,这有助于运行环境保持一致。
- Docker 让用户可以快速轻松地使用 Docker,帮助创作 Dockerfile 和 docker-compose.yml,打包和部署项目,甚至为项目生成适当的 Docker 文件。
当然,在使用 VS Code 时,你可能会发现其他有用的扩展。请在评论中分享你的发现和设置!
单击活动栏(Activity Bar)上的「扩展」图标可以访问和安装新扩展和主题。用户可以输入关键词来搜索扩展程序,以多种方式对搜索结果进行排序,快速轻松地安装扩展程序。在本文中,在活动栏的 Extensions 项中键入 python 并单击 Install 即可安装 Python 扩展:
用户可以通过相同的方式查找和安装上述任何扩展。
Visual Studio Code 配置文件
值得一提的是,Visual Studio Code 可通过用户和工作区设置(User and Workspace Settings)实现高度配置。
用户设置(User settings)在所有 Visual Studio Code 实例中都是全局性的,而工作区设置(Workspace Settings)是特定文件夹或项目工作区的本地设置。工作区设置为 VS Code 提供了极大的灵活性,工作区设置会在整篇文章中提到。工作区设置以.json 文件的形式存储在名为.vscode 的项目工作区本地文件夹中。
启动新的 Python 程序
让我们以一个新的 Python 程序来探索 Visual Studio Code 中的 Python 开发。在 VS Code 中,键入 Ctrl + N 打开一个新文件。(你也可以从菜单中选择「文件」-「新建」。)
无论你如何操作,你都应该看到一个类似于以下内容的 VS Code 窗口:
打开新文件后,你即可以输入代码。
输入 Python 代码
作为测试,我们可以快速编码埃拉托斯特尼筛法(Sieve of Eratosthenes,它可以找出小于已知数的所有质数)。在刚打开的新选项卡中键入以下代码:
等等,这是怎么回事?为什么 Visual Studio Code 没有进行任何关键词高亮显示,也没有进行任何自动格式化或任何真正有用的操作呢?它提供了什么?
答案是,VS Code 不知道它正在处理的是什么类型的文件。缓冲区被称为 Untitled-1,如果你查看窗口的右下角,则可以看到 Plain Text(纯文本)。
若要激活 Python 扩展,请保存文件(从菜单中选择 File-Save 或者从命令面板中选择 File-Save File 或者只使用 Ctrl + S)为 sieve.py。VS Code 将看到.py 扩展名并正确地将该文件转化为 Python 代码。
现在你的窗口视图应如下所示:
这样就好多了!VS Code 会自动将文件重新格式化为 Python 代码,你可以通过检查左下角的语言模式予以验证。
如果你有多个 Python 安装(如 Python 2.7、Python 3.x 或 Anaconda),则可以通过单击语言模式指示器或者从命令面板中选择 Python: Select Interpreter 来更改 VS Code 所要使用的 Python 解释器。默认情况下,VS Code 支持使用 pep8 格式,但你也可以选择 black 或 yapf。
现在可以添加其余的 Sieve 代码。若要查看 IntelliSense,请直接键入此代码而不要剪切和粘贴,你应该看到如下内容:
当键入代码时,VS Code 会对 for 和 if 语句下面的行进行自动、适当的缩进,添加右括号,并给出内容提示。
运行 Python 代码
现在代码已经完成,你可以运行它了。没有必要让编辑器执行此操作:Visual Studio Code 可以直接在编辑器中运行此程序。保存文件(Ctrl + S),然后在编辑器窗口中单击右键并选择在终端(Terminal)中运行 Python 文件(Run Python File):
你会看到终端窗格显示在窗口的底部,并显示代码输出结果。
编辑现有的 Python 项目
在 Sieve of Eratosthenes 示例中,你创建了一个 Python 文件。作为一个例子这很不错,但很多时候,你需要创建更大的项目,并在更长的时间内在它上面进行开发。
典型的新项目工作流程可能如下所示:
- 创建一个文件夹来保存项目(可能包含一个新的 GitHub 项目)
- 更改为新文件夹
- 使用命令 code filename.py 创建初始 Python 代码
在 Python 项目(而不是单个 Python 文件)上使用 Visual Studio Code 开辟了更多功能,使得 VS Code 能够真正发挥作用。让我们来看看它在更大的项目中如何运作。
假如我们编写了一个计算器程序,该程序通过艾兹格·迪科斯彻(Edsger Dijkstra)调度场算法的一种变体来解析中缀符号(infix notation)编写的方程式。
为了说明 Visual Studio Code 以项目为中心的特征,我们现在开始在 Python 中重新创建调度场算法作为方程式评估库。相应 GitHub 地址:https://github.com/JFincher42/PyEval。
本地文件夹创建后,你可以快速打开 VS Code 中的整个文件夹。由于我们已经创建了文件夹和基本文件,所以首选方法(如上所述)做出如下修正:
- cd /path/to/project
- code .
当你这种方式打开时,VS Code 了解并将使用它看到的任何 virtualenv、pipenv 或 conda 环境。你甚至不需要首先启动虚拟环境。通过菜单中的 File, Open Folder、键盘上的 Ctrl+K, Ctrl+O 或者命令面板中的 File, Open Folder 等方式,你可以打开用户界面(UI)上的文件夹。
以下是创建的方程式 eval 库项目:
当 Visual Studio Code 打开文件夹时,它还会再次打开上次打开的文件(这是可配置的)。你可以打开、编辑、运行和调试列出的任何文件。左侧活动栏中的资源管理器视图(Explorer view)提供文件夹中所有文件的视图,并显示当前选项卡集中有多少未保存文件。
代码测试的支持
VS Code 可以自动识别在 unittest、pytest 或 Nose 框架中编写的现有 Python 测试,但前提是在当前环境中安装了这些框架。作者在 unittest 框架中编写了一个用于方程式 eval 库的单元测试,你可以在这个例子中使用它。
若要运行项目中任何 Python 文件的现有单元测试,请单击右键并选择 Run Current Unit Test File。系统将提示指定测试框架,在项目中搜索测试的位置以及测试使用的文件名模式。
所有这些都保存为本地.vscode/settings.json 文件中的工作区设置,并可以进行修改。对于这个等式项目,你可以选择 unittest、当前文件夹和模式 *_test.py。
测试框架设置完成并显示测试后,你可以单击状态栏(Status Bar)上的 Run Tests 并从命令面板中选择一个 option 来运行所有测试:
通过在 VS Code 中打开测试文件,单击状态栏上的 Run Tests,然后选择 Run Unit Test Method 以及其他要运行的特定测试,你还可以运行单个测试。这使得解决单个测试失败并重新运行失败的测试变得很简单,从而能够节省大量时间。测试结果显示在 Python Test Log 下的 Output 窗格中。
调试支持
即使 VS Code 是代码编辑器,直接在 VS Code 中调试 Python 也是可以的。VS Code 提供的诸多功能可以媲美好的代码调试器,包括:
- 自动变量跟踪
- 监看表达式
- 断点
- 调用堆栈检查
你可以在活动栏上的 Debug 视图中看到这些功能:
调试器可以控制在内置终端或外部终端实例中运行的 Python 应用程序。它可以附加到已经运行的 Python 实例中,甚至可以调试 Django 和 Flask 应用程序。
在单个 Python 文件中调试代码就像按 F5 启动调试器一样简单。你可以按 F10 和 F11 分别跳过和进入函数,并按 Shift + F5 退出调试器。按 F9 设置断点,或者通过单击编辑器窗口中的左空白(lift margin)进行设置。
在开始调试更复杂的项目(包括 Django 或 Flask 应用程序)之前,你首先需要设置并选择调试配置。设置调试配置相对简单。从 Debug 视图中选择 Configuration 下拉列表(drop-down),然后选择 Add Configuration 和 Python:
Visual Studio Code 将在当前名为.vscode/launch.json 的文件夹下创建一个调试配置文件,它允许用户设置特定的 Python 配置以及调试 Django 和 Flask 等特定应用程序的设置。
你还可以执行远程调试,并调试 Jinja 和 Django 模板。关闭编辑器中的 launch.json 文件,然后从 Configuration 下拉列表中为应用程序选择正确的配置。
Git 集成
VS Code 不仅内置对源代码控制管理的支持,还支持 Git 和 GitHub。你可以在 VS Code 中安装对其他 SCM 的支持,并列使用它们。用户可以从 Source Control 视图访问源代码控制:
如果你的项目文件夹包含.git 文件夹,VS Code 会自动打开所有 Git / GitHub 功能。你可以执行以下诸多任务:
- 将文件提交给 Git
- 将更改推送到远程存储库(remote repo)并从中取出更改
- check-out 现有或创建新的分支和标签(branch and tag)
- 查看并解决合并冲突(merge conflict)
- 查看差异(view diffs)
所有这些功能都可以直接从 VS Code UI 获得:
VS Code 还可以识别编辑器外部进行的更改并且正确运作。
在 VS Code 中提交最近的更改相当简单。修改后的文件显示在 Source Control 视图中,并带有 M 标记,而新的未跟踪文件使用 U 标记。将鼠标悬停在文件上然后单击加号(+)可以暂存更改。在视图顶部添加提交消息,然后单击复选标记来提交更改:
你也可以在 VS Code 中将本地提交(local commits)推送到 GitHub。从 Source Control 视图菜单中选择 Sync,或者单击分支指示器(branch indicator)旁边状态栏上的 Synchronize Changes。
所以在作者看来,Visual Studio Code 是最酷的通用编辑器之一,也是 Python 开发的最佳候选工具。希望你也可以在 Python 开发中尝试使用 Visual Studio Code 编辑器,相信不会令你失望的。
以上是如何在 Windows 上写 Python 代码?优秀攻略来袭!的详细内容。更多信息请关注PHP中文网其他相关文章!

Curses首先出场的是 Curses[1]。CurseCurses 是一个能提供基于文本终端窗口功能的动态库,它可以: 使用整个屏幕 创建和管理一个窗口 使用 8 种不同的彩色 为程序提供鼠标支持 使用键盘上的功能键Curses 可以在任何遵循 ANSI/POSIX 标准的 Unix/Linux 系统上运行。Windows 上也可以运行,不过需要额外安装 windows-curses 库:pip install windows-curses 上面图片,就是一哥们用 Curses 写的 俄罗斯

相比大家都听过自动化生产线、自动化办公等词汇,在没有人工干预的情况下,机器可以自己完成各项任务,这大大提升了工作效率。编程世界里有各种各样的自动化脚本,来完成不同的任务。尤其Python非常适合编写自动化脚本,因为它语法简洁易懂,而且有丰富的第三方工具库。这次我们使用Python来实现几个自动化场景,或许可以用到你的工作中。1、自动化阅读网页新闻这个脚本能够实现从网页中抓取文本,然后自动化语音朗读,当你想听新闻的时候,这是个不错的选择。代码分为两大部分,第一通过爬虫抓取网页文本呢,第二通过阅读工

糟透了我承认我不是一个爱整理桌面的人,因为我觉得乱糟糟的桌面,反而容易找到文件。哈哈,可是最近桌面实在是太乱了,自己都看不下去了,几乎占满了整个屏幕。虽然一键整理桌面的软件很多,但是对于其他路径下的文件,我同样需要整理,于是我想到使用Python,完成这个需求。效果展示我一共为将文件分为9个大类,分别是图片、视频、音频、文档、压缩文件、常用格式、程序脚本、可执行程序和字体文件。# 不同文件组成的嵌套字典 file_dict = { '图片': ['jpg','png','gif','webp

长期以来,Python 社区一直在讨论如何使 Python 成为网页浏览器中流行的编程语言。然而网络浏览器实际上只支持一种编程语言:JavaScript。随着网络技术的发展,我们已经把越来越多的程序应用在网络上,如游戏、数据科学可视化以及音频和视频编辑软件。这意味着我们已经把繁重的计算带到了网络上——这并不是JavaScript的设计初衷。所有这些挑战提出了对新编程语言的需求,这种语言可以提供快速、可移植、紧凑和安全的代码执行。因此,主要的浏览器供应商致力于实现这个想法,并在2017年向世界推出

2017 年 Transformer 横空出世,由谷歌在论文《Attention is all you need》中引入。这篇论文抛弃了以往深度学习任务里面使用到的 CNN 和 RNN。这一开创性的研究颠覆了以往序列建模和 RNN 划等号的思路,如今被广泛用于 NLP。大热的 GPT、BERT 等都是基于 Transformer 构建的。Transformer 自推出以来,研究者已经提出了许多变体。但大家对 Transformer 的描述似乎都是以口头形式、图形解释等方式介绍该架构。关于 Tra

首先要说,聚类属于机器学习的无监督学习,而且也分很多种方法,比如大家熟知的有K-means。层次聚类也是聚类中的一种,也很常用。下面我先简单回顾一下K-means的基本原理,然后慢慢引出层次聚类的定义和分层步骤,这样更有助于大家理解。层次聚类和K-means有什么不同?K-means 工作原理可以简要概述为: 决定簇数(k) 从数据中随机选取 k 个点作为质心 将所有点分配到最近的聚类质心 计算新形成的簇的质心 重复步骤 3 和 4这是一个迭代过程,直到新形成的簇的质心不变,或者达到最大迭代次数

大家好,我是J哥。这个没有点数学基础是很难算出来的。但是我们有了计算机就不一样了,依靠计算机极快速的运算速度,我们利用微分的思想,加上一点简单的三角学知识,就可以实现它。好,话不多说,我们来看看它的算法原理,看图:由于待会要用pygame演示,它的坐标系是y轴向下,所以这里我们也用y向下的坐标系。算法总的思想就是根据上图,把时间t分割成足够小的片段(比如1/1000,这个时间片越小越精确),每一个片段分别构造如上三角形,计算出导弹下一个时间片走的方向(即∠a)和走的路程(即vt=|AC|),这时

集成GPT-4的Github Copilot X还在小范围内测中,而集成GPT-4的Cursor已公开发行。Cursor是一个集成GPT-4的IDE,可以用自然语言编写代码,让编写代码和聊天一样简单。 GPT-4和GPT-3.5在处理和编写代码的能力上差别还是很大的。官网的一份测试报告。前两个是GPT-4,一个采用文本输入,一个采用图像输入;第三个是GPT3.5,可以看出GPT-4的代码能力相较于GPT-3.5有较大能力的提升。集成GPT-4的Github Copilot X还在小范围内测中,而


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

Atom编辑器mac版下载
最流行的的开源编辑器

记事本++7.3.1
好用且免费的代码编辑器

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),