给出一段文字,人工智能就可以生成音乐,语音,各种音效,甚至是想象的声音,比如黑洞和激光枪。最近由英国萨里大学和帝国理工学院联合推出的AudioLDM,在发布之后迅速火遍国外,一周内在推特上收获了近 300 次的转发和 1500 次的点赞。在模型开源第二天,AudioLDM就冲上了 Hugging Face 热搜榜第一名,并在一周内进入了 Hugging Face 最受喜欢的前 40 名应用榜单(共约 25000),也迅速出现了很多基于 AudioLDM 的衍生工作。
AudioLDM 模型有如下几个亮点:
- 首个同时可以从文本生成音乐,语音和音效的开源模型。
- 由学术界开发,用更少的数据,单个 GPU,以及更小的模型,实现了目前最好的效果。
- 提出用自监督的方式训练生成模型,使文本指导音频生成不再受限于(文本-音频)数据对缺失的问题。
- 模型在不做额外训练的情况下(zero-shot),可以实现音频风格的迁移,音频缺失填充,和音频超分辨率。
- 项目主页:https://audioldm.github.io/
- 论文:https://arxiv.org/abs/2301.12503
- 开源代码和模型:https://github.com/haoheliu/AudioLDM
- Hugging Face Space:https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation
作者首先在一月二十七日发布了对模型的预告,展示了非常简单的一个文本:”A music made by []” (一段由【】生成的音乐) 去生成不同声音的效果。视频展示了由不同乐器,甚至是蚊子制作的音乐,在推特上迅速受到了广泛关注,播放次数超过 35.4K 次,被转发了 130 余次。
随后作者公开了论文和一个新的视频。这个视频中作者展示了模型的大部分能力,以及和 ChatGPT 合作去生成声音的效果。AudioLDM 甚至可以生成外太空的声音。
随后作者发布了论文,预训练的模型,和一个可玩的接口,点燃了推特网友们的热情,在第二天就迅速登上了 Hugging Face 热搜榜的第一名:
推特上这篇工作受到了广泛的关注,业内学者们纷纷转发和评价:
网友们使用 AudioLDM 生成了各种各样的声音。
比如有生成二次元猫娘打呼噜的声音:
以及鬼魂的声音:
还有网友合成出了:“木乃伊的声音,低频,有一些痛苦的呻吟声”。
甚至还有网友合成出了:“有旋律的放屁声”。
不得不感叹网友们想象力之丰富。
还有网友直接用 AudioLDM 生成了一系列的音乐专辑,有各种不同的风格,包括爵士,放克,电子和古典等类型。一些音乐颇有创造性。
比如 “以宇宙和月球为主题创作一个氛围音乐”:
以及 “使用未来的声音创作一个音乐”:
感兴趣的读者可以访问这个音乐专辑网站:https://www.latent.store/albums
也有网友发挥想象力,结合图片生成文字的模型和 AudioLDM,制作了一个图片指导音效生成的应用。
比如说如果给 AudioLDM 这样的文本:”A dog running in the water with a frisbee” (一个在水中奔跑并叼着飞盘的狗狗):
可以生成如下狗狗拍打水面的声音。
甚至可以还原老照片中的声音,比如下边这个图片:
在获得 “A man and a woman sitting at a bar”(一个男人和一个女人坐在酒吧中)的文本后,模型可以生成如下的声音,可以听到模糊的说话声,以及背景酒杯碰撞的声音。
还有网友用 AudioLDM 生成了火焰狗狗的声音,非常有趣。
作者还制作了一个视频来展示模型在音效上的生成能力,展示了 AudioLDM 生成样本接近音效库的效果。
事实上文本生成音频只是 AudioLDM 的能力的一部分,AudioLDM 同样可以实现音色转换、缺失填补和超分辨率。
下边这两张图展示了(1)打击乐到氛围音乐;以及(2)小号到小朋友的歌声的音色转换。
下边是打击乐到氛围音乐(渐进的转换强度)的效果。
小号的声音转化为小朋友唱歌的声音(渐进的转换强度)的效果。
下边我们将会展示模型在音频超分辨率,音频缺失填充和发声材料控制上的效果。由于文章篇幅有限,音频主要用频谱图的方式展示,感兴趣的读者请前往 AudioLDM 的项目主页查看:https://audioldm.github.io/
在音频超分上,AudioLDM 的效果也是非常优秀,相比之前的超分辨率模型,AudioLDM 是通用的超分辨率模型,不仅限于处理音乐和语音。
在音频缺失填充上,AudioLDM 可以根据给定文本的不同填入不同的音频内容,并且在边界处过渡比较自然。
此外,AudioLDM 还展现出了很强的控制能力,例如对声学环境,音乐的情绪和速度,物体材料,音调高低以及先后顺序等都有很强的控制能力,感兴趣的读者可以到 AudioLDM 的论文或项目主页查看。
作者在文章中对 AudioLDM 模型做了主观打分和客观指标的评测,结果显示都可以明显超过之前最优的模型:
其中 AudioGen 为 Facebook 在 2022 年十月提出的模型,使用了十个数据集,64 块 GPU 和 285 兆的参数量。与之相比,AudioLDM-S 可以用单独一个数据集,1 块 GPU 和 181 兆的参数量达到更好的效果。
主观打分也可以看出 AudioLDM 明显优于之前的方案 DiffSound。那么,AudioLDM 究竟做了哪些改进使得模型有如此优秀的性能呢?
首先,为了解决文本 - 音频数据对数量太少的问题,作者提出了自监督的方式去训练 AudioLDM。
具体来说,在训练核心模块 LDMs 的时候,作者使用音频自身的 embedding 去作为 LDMs 的 condition 信号,整个流程并不涉及文本的使用(如上图所示)。这种方案基于一对预训练好的音频 - 文本对比学习编码器(CLAP),在 CLAP 原文中 CLAP 展示了很好的泛化能力。AudioLDM 利用了 CLAP 优秀的泛化能力,达到了在不需要文本标签情况下在大规模音频数据上的模型训练。
事实上,作者发现单使用音频训练甚至能比使用音频 - 文本数据对更好:
作者分析了两方面原因:(1)文本标注本身难以包括音频的所有信息,比如声学环境,频率分布等,从而导致文本的 embedding 不能很好表征音频,(2)文本本身的质量并不完美,例如这样的一个标注 “Boats: Battleships-5.25 conveyor space”,这种标注即使人类也很难想象具体是什么声音,就会导致模型训练的问题。相比之下,使用音频自身做 LDM 的 condition 可以保证目标音频和 condition 的强关联性,从而达到更好的生成效果。
除此之外,作者采用的 Latent Diffusion 方案使得 Diffusion 模型可以在一个较小的空间中进行计算,从而大大的减少了模型对算力的要求。
在模型训练和结构上的许多细节探索也帮助 AudioLDM 获得了优秀的性能。
作者还画了一个简单的结构图来介绍了两种主要的下游任务:
作者还在不同的模型结构,模型大小,DDIM 采样步数以及不同 Classifier-free Guidance Scale 做了详尽的实验。
在公开模型的同时,作者还公开了他们的生成模型评价体系的代码库,以统一今后学术界在这类问题上的评价方法,从而方便论文之间的比较,代码在如下链接中:https://github.com/haoheliu/audioldm_eval
在这项技术爆火的同时,也有网友对技术的安全性提出了质疑:
作者的团队表示会对模型的使用尤其是商用加以限制,保证模型仅被用来学术交流,并使用合适的 LICENSE 和水印保护,防止 Ethic 方面问题的出现。
作者信息
论文有两位共同一作:刘濠赫(英国萨里大学)和陈泽华(英国帝国理工学院)。
刘濠赫目前博士就读于英国萨里大学,师从 Mark D. Plumbley 教授。其开源项目在 GitHub 上收获了上千star。在各大学术会议上发表论文二十余篇,并在多项世界机器声学大赛中获得前三的名次。在企业界与微软,字节跳动,英国广播公司等有广泛的合作,个人主页: https://www.surrey.ac.uk/people/haohe-liu
陈泽华是英国帝国理工学院在读博士生,师从 Danilo Mandic 教授,曾在微软语音合成研究组及京东人工智能实验室实习,研究兴趣涉及生成模型、语音合成、生物电信号生成。
以上是开源模型、单卡训练,带你了解爆火的文本指导音频生成技术AudioLDM的详细内容。更多信息请关注PHP中文网其他相关文章!

隐藏者的开创性研究暴露了领先的大语言模型(LLM)的关键脆弱性。 他们的发现揭示了一种普遍的旁路技术,称为“政策木偶”,能够规避几乎所有主要LLMS

对环境责任和减少废物的推动正在从根本上改变企业的运作方式。 这种转变会影响产品开发,制造过程,客户关系,合作伙伴选择以及采用新的

最近对先进AI硬件的限制突出了AI优势的地缘政治竞争不断升级,从而揭示了中国对外国半导体技术的依赖。 2024年,中国进口了价值3850亿美元的半导体

从Google的Chrome剥夺了潜在的剥离,引发了科技行业中的激烈辩论。 OpenAI收购领先的浏览器,拥有65%的全球市场份额的前景提出了有关TH的未来的重大疑问

尽管总体广告增长超过了零售媒体的增长,但仍在放缓。 这个成熟阶段提出了挑战,包括生态系统破碎,成本上升,测量问题和整合复杂性。 但是,人工智能

在一系列闪烁和惰性屏幕中,一个古老的无线电裂缝带有静态的裂纹。这堆积不稳定的电子设备构成了“电子废物土地”的核心,这是身临其境展览中的六个装置之一,&qu&qu

Google Cloud的下一个2025:关注基础架构,连通性和AI Google Cloud的下一个2025会议展示了许多进步,太多了,无法在此处详细介绍。 有关特定公告的深入分析,请参阅我的文章

本周在AI和XR中:一波AI驱动的创造力正在通过从音乐发电到电影制作的媒体和娱乐中席卷。 让我们潜入头条新闻。 AI生成的内容的增长影响:技术顾问Shelly Palme


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

Atom编辑器mac版下载
最流行的的开源编辑器

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

SublimeText3 Linux新版
SublimeText3 Linux最新版

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中