搜索
首页科技周边人工智能适配Diffusers框架的全套教程来了!从T2I-Adapter到大热ControlNet

在 ChatGPT 出圈不久,ControlNet 的横空出世很快在英文和中文互联网收获了众多开发者和普通用户,甚至有用户宣传 ControlNet 的出现将 AI 创作带入了直立行走的时代。不夸张地说,包括 ControlNet 在内,同期的 T2I-Adapter、Composer, 以及 LoRA 训练技巧,可控生成作为 AI 创作最后一道高墙,极有可能在可预见的时间内有进一步突破,从而极大地降低用户的创作成本,提高创作的可玩性。距离 ControlNet 开源仅仅过去两周,其官方 Star 就已经超过 1 万,这种热度无疑是空前的。

与此同时,开源社区也极大地降低了用户的使用门槛,如 Hugging Face 平台提供了基础模型权重以及通用的模型训练框架 diffusers,stable-diffusion-webui 开发了完善的一套 Demo 平台,Civitai 贡献了海量风格化 LoRA 权重。

图片

图片

尽管 webui 作为目前最受欢迎的可视化工具,已经快速地支持了近期推出的各种生成模型,并且支持众多选项供用户设置。由于其重点考虑了前端界面的易用性,背后代码结构其实十分复杂,对于开发者而言不够友好。比如 webui 尽管支持了多种类型的加载和推理,但却无法支持不同框架下的转换,也无法支持模型的灵活训练。我们在社区讨论中发现了许多现有开源代码暂未解决的痛点。

首先,代码框架不兼容,目前热门的模型,如 ControlNet、T2I-Adapter,与主流的 Stable Diffusion 训练库 diffusers 不兼容,ControlNet 预训练的模型无法直接在 diffusers 框架中被使用。

其次,模型加载受限,目前模型保存格式多样,如.bin、.ckpt、.pth、.satetensors 等,除了 webui 外,目前 diffusers 框架对于这些模型格式的支持还有限,考虑到 LoRA 大部分模型以 safetensors 保存为主,用户很难直接将 LoRA 的模型加载到已有的基于 diffusers 框架训练的模型中。

第三,基础模型受限,目前 ControlNet、T2I-Adapter 均基于 Stable-Diffusion-1.5 进行训练,且仅开源了 SD1.5 下的模型权重,考虑到特定场景,已经存在诸如 anything-v4、ChilloutMix 等优质动漫模型,即使引入了可控信息,最终生成结果仍然受限于 SD1.5 中 UNet 的能力。

最后,模型训练受限,目前 LoRA 已经被广泛验证是风格迁移、保持特定形象 IP 最有效的方法之一,但 diffusers 框架目前仅支持 UNet 的 LoRA 嵌入,无法支持 text encoder 的嵌入,会限制 LoRA 的训练。

我们和开源社区讨论后,了解到 diffusers 框架作为通用代码库,正计划同时适配近期不断推出的生成模型;由于涉及较多底层接口重写,仍然需要一段时间更新。为此,我们从以上实际存在的问题出发,率先提出了对于每一个问题的自研解决方案,快速帮助开发者更容易地开发。

LoRA、ControlNet、T2I-Adapter 到 diffusers 的全适配方案

LoRA for diffusers

本方案是为了在 diffusers 框架,即基于 diffusers 训练保存的模型中,灵活嵌入各种格式的 LoRA 权重。由于 LoRA 的训练通常冻结 base model,因此可以作为可插拔模块轻松嵌入已有模型,作为风格或 IP 条件约束。LoRA 本身是一种通用的训练技巧,它的基本原理是,通过低秩分解,可以极大地减少模块的参数量,目前在图像生成中,一般用于训练独立于 base model 外的可插拔模块,实际使用是以残差形式与 base model 的输出合并。

首先是 LoRA 权重的嵌入,目前 Civitai 平台上提供的权重主要以 ckpt 或 safetensors 格式存储,分以下两种情况。

(1)Full model(base model + LoRA 模块)

如果 full model 是 safetensors 格式,可以通过以下 diffusers 脚本转换

python ./scripts/convert_original_stable_diffusion_to_diffusers.py --checkpoint_path xxx.safetensors--dump_path save_dir --from_safetensors

如果 full model 是 ckpt 格式,可以通过以下 diffusers 脚本转换

python ./scripts/convert_original_stable_diffusion_to_diffusers.py --checkpoint_path xxx.ckpt--dump_path save_dir

转换完成后,可直接利用 diffusers 的 API 进行模型加载

from diffusers import StableDiffusionPipeline
pipeline = StableDiffusionPipeline.from_pretrained (save_dir,torch_dtype=torch.float32)

(2)LoRA only (仅包含 LoRA 模块)

目前 diffusers 官方无法支持仅加载 LoRA 权重,而开源平台上的 LoRA 权重基本以这种形式存储。本质上是完成 LoRA 权重中 key-value 的重新映射,使其适配到 diffusers 模型中。为此,我们自行支持这个功能,提供了转换脚本。

pipeline = StableDiffusionPipeline.from_pretrained (model_id,torch_dtype=torch.float32)
model_path = "onePieceWanoSagaStyle_v2Offset.safetensors"
state_dict = load_file (model_path)

只需要指定 diffusers 格式的模型,以及存储为 safetensors 格式的 LoRA 权重。我们提供了一个转换示例。

# the default mergering ratio is 0.75, you can manually set it 
python convert_lora_safetensor_to_diffusers.py

此外,LoRA 本身由于其轻量化,可以在小数据情况下快速完成训练,并能够嵌入到其他网络中。为了不局限于已有 LoRA 权重,我们在 diffusers 框架中支持了 LoRA 的多模块(UNet+text encoder)训练,并已经在官方代码库提交 PR(https://github.com/huggingface/diffusers/pull/2479),并支持了 ColossalAI 中训练 LoRA。

代码开源在:https://github.com/haofanwang/Lora-for-Diffusers

ControlNet for diffusers

图片

本方案是为了支持在 diffusers 框架中,使用 ControlNet。基于开源社区的部分尝试,我们提供了完整的 ControlNet+Anything-V3 使用用例,支持将 base model 从原本 SD1.5 的替换到 anything-v3 模型,使 ControlNet 具备较好动漫生成的能力。

此外,我们也支持 ControlNet+Inpainting,并提供了适配 diffusers 的 pipeline,

图片

图片

以及多条件控制的 Multi-ControlNet。

图片

代码开源在:https://github.com/haofanwang/ControlNet-for-Diffusers

T2I-Adapter for diffusers

图片

与 ControlNet 相似,我们也同时支持了同期开源的 T2I-Adapter 到 diffusers 的适配。

代码开源在:https://github.com/haofanwang/T2I-Adapter-for-Diffusers

目前以上三种适配方案均已经向社区开源,并在 ControlNet、T2I-Adapter 中被官方分别致谢,也收到了来自 stable-diffusion-webui-colab 作者的感谢。我们正在与 diffusers 官方保持讨论,会在近期完成以上方案向官方代码库的集成工作。也欢迎大家提前尝试我们的工作,有任何问题均可以直接提 issue,我们会尽快回复。

以上是适配Diffusers框架的全套教程来了!从T2I-Adapter到大热ControlNet的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
及时工程中的思想图是什么及时工程中的思想图是什么Apr 13, 2025 am 11:53 AM

介绍 在迅速的工程中,“思想图”是指使用图理论来构建和指导AI的推理过程的新方法。与通常涉及线性S的传统方法不同

优化您的组织与Genai代理商的电子邮件营销优化您的组织与Genai代理商的电子邮件营销Apr 13, 2025 am 11:44 AM

介绍 恭喜!您经营一家成功的业务。通过您的网页,社交媒体活动,网络研讨会,会议,免费资源和其他来源,您每天收集5000个电子邮件ID。下一个明显的步骤是

Apache Pinot实时应用程序性能监视Apache Pinot实时应用程序性能监视Apr 13, 2025 am 11:40 AM

介绍 在当今快节奏的软件开发环境中,确保最佳应用程序性能至关重要。监视实时指标,例如响应时间,错误率和资源利用率可以帮助MAIN

Chatgpt击中了10亿用户? Openai首席执行官说:'短短几周内翻了一番Chatgpt击中了10亿用户? Openai首席执行官说:'短短几周内翻了一番Apr 13, 2025 am 11:23 AM

“您有几个用户?”他扮演。 阿尔特曼回答说:“我认为我们上次说的是每周5亿个活跃者,而且它正在迅速增长。” “你告诉我,就像在短短几周内翻了一番,”安德森继续说道。 “我说那个私人

pixtral -12b:Mistral AI'第一个多模型模型 - 分析Vidhyapixtral -12b:Mistral AI'第一个多模型模型 - 分析VidhyaApr 13, 2025 am 11:20 AM

介绍 Mistral发布了其第一个多模式模型,即Pixtral-12b-2409。该模型建立在Mistral的120亿参数Nemo 12B之上。是什么设置了该模型?现在可以拍摄图像和Tex

生成AI应用的代理框架 - 分析Vidhya生成AI应用的代理框架 - 分析VidhyaApr 13, 2025 am 11:13 AM

想象一下,拥有一个由AI驱动的助手,不仅可以响应您的查询,还可以自主收集信息,执行任务甚至处理多种类型的数据(TEXT,图像和代码)。听起来有未来派?在这个a

生成AI在金融部门的应用生成AI在金融部门的应用Apr 13, 2025 am 11:12 AM

介绍 金融业是任何国家发展的基石,因为它通过促进有效的交易和信贷可用性来推动经济增长。交易的便利和信贷

在线学习和被动攻击算法指南在线学习和被动攻击算法指南Apr 13, 2025 am 11:09 AM

介绍 数据是从社交媒体,金融交易和电子商务平台等来源的前所未有的速度生成的。处理这种连续的信息流是一个挑战,但它提供了

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器