2015 年,谷歌大脑开放了一个名为「TensorFlow」的研究项目,这款产品迅速流行起来,成为人工智能业界的主流深度学习框架,塑造了现代机器学习的生态系统。从那时起,成千上万的开源贡献者以及众多的开发人员、社区组织者、研究人员和教育工作者等都投入到这一开源软件库上。
然而七年后的今天,故事的走向已经完全不同:谷歌的 TensorFlow 失去了开发者的拥护。因为 TensorFlow 用户已经开始转向 Meta 推出的另一款框架 PyTorch。
众多开发者都认为 TensorFlow 已经输掉了这场战争,并将其比喻为:「PyTorch 吃掉了 TensorFlow 的午餐。」
在 PyTorch 的阴影下,谷歌正在悄悄地开发一个机器学习框架,就是 JAX(曾是「Just After eXecution」的首字母缩写,但官方说法中不再代表任何东西),许多人将其视为 TensorFlow 的继承者。
一时之间,关于谷歌要放弃 TensorFlow,全面转向 JAX 的说法闹得人尽皆知。其实不然,谷歌并没有放弃 TensorFlow,他们表示未来 TensorFlow 将与 JAX 并肩发展。
不过话说回来,在这短短的七年中,TensorFlow 已经有了亮眼的表现,已然发展成为最常用的机器学习平台,使用人数达数百万。TensorFlow 现在每月被下载超过 18M 次,在 GitHub 上积累了 166k 颗星——比任何其他 ML 框架都多。
此外,TensorFlow 还为在移动生态系统上进行机器学习带来了便利:目前 TFLite 在大约 40 亿台设备上运行,也许你的设备也包含在内。TensorFlow 还将机器学习引入 Web,TensorFlow.js 现在每周下载量超 17 万次。
在谷歌的整个产品系列中,TensorFlow 几乎为所有机器学习提供支持,包括搜索、GMail、YouTube、Maps 、Play、广告、照片等等。除了谷歌,在 Alphabet 旗下的子公司,TensorFlow 连同 Keras 为 Waymo 自动驾驶汽车提供了新的机器智能。
在更广泛的行业中,TensorFlow 为数千家公司的机器学习系统提供支持,其中包括苹果、ByteDance、Netflix、腾讯、Twitter 等公司。研究领域,在 Google Scholar 上每个月都有超过 3000 篇出版物提到 TensorFlow,包括重要的应用科学研究,比如了解癌症的 CANDLE 研究。
毫不夸张的说,TensorFlow 基础用户和开发者生态比以往任何时候都要多,而且还在不断增长。谷歌认为 TensorFlow 的发展不仅是一项值得庆祝的成就,它也为机器学习社区走得更远提供了新的机会。
谷歌一直以来奉行的目标是提供最好的机器学习平台,并努力将机器学习从小众工艺转变为像 Web 开发一样成熟的行业软件。
谷歌对 TensorFlow 的开发还将继续,走过了 7 年,还会有下个 7 年。
TensorFlow 未来四大支柱
近日,谷歌宣布他们已经着手开发 TensorFlow 的下一个迭代,并专注于四大支柱。更具体地,谷歌计划在 2023 年第二季度发布新的 TensorFlow 预览版,之后晚些时候发布生产版本。
快速和可扩展
首先是 XLA 编译。谷歌专注于 XLA 编译,让训练和推理模型在 GPU 和 CPU 上更快,并致力于让 XLA 成为行业标准的深度学习编译器,并且作为 OpenXLA 计划的一部分,谷歌已将其开放给开源协作。
其次是分布式计算。谷歌正在专注于 DTensor 的研究,这是一种用于大规模模型并行的新 API。DTensor 将与 tf.distribute API 统一,允许灵活的模型和数据并行。
最后是性能优化。除了编译之外,谷歌还进一步专注于算法性能优化,例如混合精度和降低精度计算,从而在 GPU 和 TPU 上提供相当大的加速。
应用型 ML
用于 CV 和 NLP 的新工具。谷歌正在投资应用型 ML(Applied ML)的生态系统,特别是通过 KerasCV 和 Keras NLP 包为各种用例提供模块化和可组合的组件。
开发者资源。谷歌正在为流行以及新兴的应用机器学习用例添加更多代码示例、指南和文档,降低开发人员进入 ML 的门槛,使得每个开发工具简单可用。
部署层面
更容易导出。谷歌将会使模型导出到移动设备(Android 或 iOS)、边缘设备(微控制器)、服务器后端或 JavaScript 变得更加容易。用户可以将模型导出到 TFLite 和 TF.js,并优化模型推理性能,操作起来就像调用 model.export() 一样简单。
用于应用程序的 C++ API 。谷歌正在开发公共 TF2 C++ API ,作为 C++ 应用程序的一部分用于本地服务器端推理。
部署 JAX 模型。谷歌正在使得 TensorFlow 服务部署模型变得更容易。
简单化
NumPy API。过去几年,ML 领域快速发展,与此同时 TensorFlow 的 API 也随之增加。为了适应技术的发展,谷歌正在全面整合和简化 API。
让 debug 变得更容易。在 ML 领域,debug 是一项不可忽略的技术。谷歌将专注于更好的 debug 功能,以最小化其时间。
谷歌表示,TensorFlow 未来将是 100% 向后兼容的。谷歌希望 TensorFlow 成为机器学习行业赖以发展的基石,并承诺从 TensorFlow 2 开始到下一个版本,TensorFlow 完全向后兼容,代码将按原样运行,不需要运行转换脚本,也不需要手动更改。谷歌将继续在 TensorFlow 框架上投资,以推动研究和应用,为数百万用户服务。
以上是谷歌并未放弃TensorFlow,将于2023年发布新版,明确四大支柱的详细内容。更多信息请关注PHP中文网其他相关文章!

由于AI的快速整合而加剧了工作场所的迅速危机危机,要求战略转变以外的增量调整。 WTI的调查结果强调了这一点:68%的员工在工作量上挣扎,导致BUR

约翰·塞尔(John Searle)的中国房间论点:对AI理解的挑战 Searle的思想实验直接质疑人工智能是否可以真正理解语言或具有真正意识。 想象一个人,对下巴一无所知

与西方同行相比,中国的科技巨头在AI开发方面的课程不同。 他们不专注于技术基准和API集成,而是优先考虑“屏幕感知” AI助手 - AI T

MCP:赋能AI系统访问外部工具 模型上下文协议(MCP)让AI应用能够通过标准化接口与外部工具和数据源交互。由Anthropic开发并得到主要AI提供商的支持,MCP允许语言模型和智能体发现可用工具并使用合适的参数调用它们。然而,实施MCP服务器存在一些挑战,包括环境冲突、安全漏洞以及跨平台行为不一致。 Forbes文章《Anthropic的模型上下文协议是AI智能体发展的一大步》作者:Janakiram MSVDocker通过容器化解决了这些问题。基于Docker Hub基础设施构建的Doc

有远见的企业家采用的六种策略,他们利用尖端技术和精明的商业敏锐度来创造高利润的可扩展公司,同时保持控制权。本指南是针对有抱负的企业家的,旨在建立一个

Google Photos的新型Ultra HDR工具:改变图像增强的游戏规则 Google Photos推出了一个功能强大的Ultra HDR转换工具,将标准照片转换为充满活力的高动态范围图像。这种增强功能受益于摄影师

技术架构解决了新兴的身份验证挑战 代理身份集线器解决了许多组织仅在开始AI代理实施后发现的问题,即传统身份验证方法不是为机器设计的

(注意:Google是我公司的咨询客户,Moor Insights&Strateging。) AI:从实验到企业基金会 Google Cloud Next 2025展示了AI从实验功能到企业技术的核心组成部分的演变,


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

记事本++7.3.1
好用且免费的代码编辑器

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),