就机器学习而言,音频本身是一个有广泛应用的完整的领域,包括语音识别、音乐分类和声音事件检测等等。传统上音频分类一直使用谱图分析和隐马尔可夫模型等方法,这些方法已被证明是有效的,但也有其局限性。近期VIT已经成为音频任务的一个有前途的替代品,OpenAI的Whisper就是一个很好的例子。
GTZAN 数据集是在音乐流派识别 (MGR) 研究中最常用的公共数据集。 这些文件是在 2000-2001 年从各种来源收集的,包括个人 CD、收音机、麦克风录音,代表各种录音条件下的声音。
这个数据集由子文件夹组成,每个子文件夹是一种类型。
我们将加载每个.wav文件,并通过librosa库生成相应的Mel谱图。
mel谱图是声音信号的频谱内容的一种可视化表示,它的垂直轴表示mel尺度上的频率,水平轴表示时间。它是音频信号处理中常用的一种表示形式,特别是在音乐信息检索领域。
梅尔音阶(Mel scale,英语:mel scale)是一个考虑到人类音高感知的音阶。因为人类不会感知线性范围的频率,也就是说我们在检测低频差异方面要胜于高频。 例如,我们可以轻松分辨出500 Hz和1000 Hz之间的差异,但是即使之间的距离相同,我们也很难分辨出10,000 Hz和10,500 Hz之间的差异。所以梅尔音阶解决了这个问题,如果梅尔音阶的差异相同,则意指人类感觉到的音高差异将相同。
def wav2melspec(fp): y, sr = librosa.load(fp) S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128) log_S = librosa.amplitude_to_db(S, ref=np.max) img = librosa.display.specshow(log_S, sr=sr, x_axis='time', y_axis='mel') # get current figure without white border img = plt.gcf() img.gca().xaxis.set_major_locator(plt.NullLocator()) img.gca().yaxis.set_major_locator(plt.NullLocator()) img.subplots_adjust(top = 1, bottom = 0, right = 1, left = 0, hspace = 0, wspace = 0) img.gca().xaxis.set_major_locator(plt.NullLocator()) img.gca().yaxis.set_major_locator(plt.NullLocator()) # to pil image img.canvas.draw() img = Image.frombytes('RGB', img.canvas.get_width_height(), img.canvas.tostring_rgb()) return img
上述函数将产生一个简单的mel谱图:
现在我们从文件夹中加载数据集,并对图像应用转换。
class AudioDataset(Dataset): def __init__(self, root, transform=None): self.root = root self.transform = transform self.classes = sorted(os.listdir(root)) self.class_to_idx = {c: i for i, c in enumerate(self.classes)} self.samples = [] for c in self.classes: for fp in os.listdir(os.path.join(root, c)): self.samples.append((os.path.join(root, c, fp), self.class_to_idx[c])) def __len__(self): return len(self.samples) def __getitem__(self, idx): fp, target = self.samples[idx] img = Image.open(fp) if self.transform: img = self.transform(img) return img, target train_dataset = AudioDataset(root, transform=transforms.Compose([ transforms.Resize((480, 480)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]))
我们将利用ViT来作为我们的模型:Vision Transformer在论文中首次介绍了一幅图像等于16x16个单词,并成功地展示了这种方式不依赖任何的cnn,直接应用于图像Patches序列的纯Transformer可以很好地执行图像分类任务。
将图像分割成Patches,并将这些Patches的线性嵌入序列作为Transformer的输入。Patches的处理方式与NLP应用程序中的标记(单词)是相同的。
由于缺乏CNN固有的归纳偏差(如局部性),Transformer在训练数据量不足时不能很好地泛化。但是当在大型数据集上训练时,它确实在多个图像识别基准上达到或击败了最先进的水平。
实现的结构如下所示:
class ViT(nn.Sequential): def __init__(self, in_channels: int = 3, patch_size: int = 16, emb_size: int = 768, img_size: int = 356, depth: int = 12, n_classes: int = 1000, **kwargs): super().__init__( PatchEmbedding(in_channels, patch_size, emb_size, img_size), TransformerEncoder(depth, emb_size=emb_size, **kwargs), ClassificationHead(emb_size, n_classes)
训练循环也是传统的训练过程:
vit = ViT( n_classes = len(train_dataset.classes) ) vit.to(device) # train train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) optimizer = optim.Adam(vit.parameters(), lr=1e-3) scheduler = ReduceLROnPlateau(optimizer, 'max', factor=0.3, patience=3, verbose=True) criterion = nn.CrossEntropyLoss() num_epochs = 30 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) vit.train() running_loss = 0.0 running_corrects = 0 for inputs, labels in tqdm.tqdm(train_loader): inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() with torch.set_grad_enabled(True): outputs = vit(inputs) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / len(train_dataset) epoch_acc = running_corrects.double() / len(train_dataset) scheduler.step(epoch_acc) print('Loss: {:.4f} Acc: {:.4f}'.format(epoch_loss, epoch_acc))
使用PyTorch从头开始训练了这个Vision Transformer架构的自定义实现。因为数据集非常小(每个类只有100个样本),这影响了模型的性能,只获得了0.71的准确率。
这只是一个简单的演示,如果需要提高模型表现,可以使用更大的数据集,或者稍微调整架构的各种超参数!
这里使用的vit代码来自:
https://medium.com/artificialis/vit-visiontransformer-a-pytorch-implementation-8d6a1033bdc5
以上是从视频到音频:使用VIT进行音频分类的详细内容。更多信息请关注PHP中文网其他相关文章!