搜索
首页科技周边人工智能GNN的基础、前沿和应用

GNN的基础、前沿和应用

近年来,图神经网络(GNN)取得了快速、令人难以置信的进展。图神经网络又称为图深度学习、图表征学习(图表示学习)或几何深度学习,是机器学习特别是深度学习领域增长最快的研究课题。本次分享的题目为《GNN的基础、前沿和应用》,主要介绍由吴凌飞、崔鹏、裴健、赵亮几位学者牵头编撰的综合性书籍《图神经网络基础、前沿与应用》中的大致内容。

一、图神经网络的介绍

1、为什么要研究图?

图片

图是一种描述和建模复杂系统的通用语言。图本身并不复杂,它主要由边和结点构成。我们可以用结点表示任何我们想要建模的物体,可以用边表示两个结点之间的关系或者相似度。我们常说的图神经网络或者图机器学习,通常是将图的结构以及边和结点的信息作为算法的输入,输出想要的结果。比如在搜索引擎中,当我们输入一个 query 时,引擎会根据 query 的信息、用户的信息以及一些上下文信息返回个性化的搜索结果,这些信息可以天然地以图的方式进行组织。

图片

2、图结构数据无处不在

图片

图结构数据到处可见,比如 Internet、社交网络等。除此之外,在如今非常火的蛋白质发现领域,人们会用图来描述和建模已有的蛋白质并生成新的图,从而帮助人们去发现新的药物。我们也可以用图去做一些复杂的程序分析,还可以在计算机视觉中去做一些 high-level 的推理。

3、图机器学习的近期趋势

图片

图机器学习并不是一个非常新的话题,近 20 年来一直都有这个研究方向,以前一直比较小众。2016 年开始,随着现代图神经网络相关论文的出现,图机器学习成为了一个热门的研究方向。人们发现这种新一代的图机器学习方式可以更好地学习数据本身和数据之间的信息,从而能够更好地得到数据表征,最终能够更好地完成更重要的任务。

4、图神经网络的简单历史

图片

最早的图神经网络相关论文出现在 2009 年,在深度学习流行之前。现代图神经网络相关论文出现在 2016 年,是对早期的图神经网络的改进。之后,GCN 的出现推动了图神经网络的快速发展,2017 年至今,有大量新的算法涌现出来。随着图神经网络的算法越来越成熟,2019 年至今,工业界尝试用这些算法解决一些实际问题,同时也有很多开源的工具被开发出来去提升解决问题的效率。2021 年至今,很多图神经网络相关的书籍被撰写出来,当然也包括这本《图神经网络基础、前沿与应用》。

图片

《图神经网络基础、前沿与应用》一书系统地介绍了图神经网络领域中最核心的概念和技术,以及前沿的研究和开发,并介绍了在不同领域的应用。无论是学术界还是工业界的读者,都能够从中受益。

二、图神经网络的基础

1、机器学习的生命周期

图片

上图体现了机器学习的生命周期,其中特征学习是非常重要的环节,它的主要任务是将原始数据转化为结构化的数据。在深度学习出现之前,大家主要是通过特征工程来完成这个任务。深度学习出现以后,这种端到端的机器学习方式开始成为主流

2、图中的特征学习

图片

Feature Learning in Graphs 和深度学习的做法非常类似,目标是设计有效的和任务相关或者和任务无关的特征学习方法将原始图中的结点映射到高维空间中,从而得到结点的 embedding 表示,进而完成下游任务。

3、图神经网络的基础

图片

图神经网络中有两类需要学习的表征:

  • 图结点的表征

需要一个 filter operation,将图的矩阵和结点的向量表示作为输入,不断学习,更新结点的向量表示。目前比较普遍的 filter operation 有 Spectral-based、Spatial-based、Attention-based、Recurrent-based。

  • 图的表征

需要一个 pool operation,将图的矩阵和结点的向量表示作为输入,不断学习,得到包含更少的结点的图的矩阵及其结点的向量表示,最终得到 graph-level 的向量表示来表征整张图。目前比较常见的 pool operation 有 Flat Graph Pooling(比如 Max、Ave、Min),Hierarchical Graph Pooling(比如 Diffpool)。

4、图神经网络的基本模型

图片

在机器学习领域有一个 context learning 的概念。在图神经网络中,一个结点的 context 就是它的邻居结点,我们可以用一个结点的的邻居结点来学习这个结点的向量表示。

图片

通过这种方式,每个结点都可以定义一个计算图。

图片

我们可以将计算图分层,第一层的就是最原始的信息,通过逐层传递和聚合信息来学到所有结点的向量表示。

图片

图片


图片

上图大致描述了图神经网络模型学习的主要步骤,主要有以下四个步骤:

  • 定义一个聚合函数;
  • 根据任务定义损失函数;
  • 训练一批结点,比如可以一次训练一批计算图;
  • 为每个结点产出需要的向量表示,甚至是一些从来没有训练过的结点(学习的是聚合函数,可以用聚合函数和已经训练过的向量表示得到新结点的向量表示)。

图片

上图是一个以平均作为聚合函数的例子,第 k 层结点 v 的向量表示依赖于上一层其邻居结点的向量表示的平均和上一层其自己的向量表示。

图片

对以上的内容进行总结,图神经网络的要点就是通过聚合邻居结点的信息生成目标结点的向量表示,它考虑到了编码器中的参数共享,也考虑到了推理学习。

5、图神经网络的流行模型

图片

图神经网络经典或者流行的算法本质上是使用不同的 aggregation function 或者 filter function,可以分为有监督的图神经网络和无监督的图神经网络。

图片

GCN 是最经典的算法之一,它能够直接作用于图并且利用其结构信息。围绕提升模型速度、实用性以及稳定性,如上图所示,GCN 也经历了几次迭代。GCN 的论文是具有划时代意义的,为图神经网络奠定了基础。

图片

MPNN 的核心要点是将图卷积转化为信息传递的过程,它定义两个 function,分别是 aggregation function 和 update function。这个算法是一个简单通用的算法,但是它并不高效。

GraphSage 是工业级别的算法,它使用采样的方式来得到一定数量的邻居结点从而学校结点的向量表示。

图片

GAT 则是引入 attention 的思想,它的核心要点是动态地学习执行信息传递过程中边的权重。

图片

除了以上介绍的算法以外,还有 GGNN,它的特点是输出可以是多个结点,大家感兴趣可以去看相关的论文。

在《图神经网络基础、前沿与应用》这本书中的第五、六、七、八章还分别介绍了如何评估图神经网络、图神经网络的扩展性、图神经网络的解释性、图神经网络的对抗稳定性,大家感兴趣可以去阅读书中对应的章节。

三、图神经网络的前沿

1、Graph Structure Learning

图片

图神经网络是需要图结构数据的,但是给定的图结构是否是最优的是存疑的,有的时候可能会有很多的噪声,很多应用可能没有图结构的数据,甚至仅仅只有原始的特征。

图片

所以,我们需要利用图神经网络学习到最优的图表示以及图结点表征。

图片

我们将图的学习转化为结点间相似的学习,并通过正则化的方式控制平滑度、系属性和连接性,通过迭代的方式去提炼图的结构和图的向量表示。

图片

图片

图片

实验数据可以表现出这种方式的优势。

图片

通过图可视化的结果可以发现,学出的图倾向于将同类的对象聚在一起,有一定的可解释性。

2、Other Frontiers

在《图神经网络基础、前沿与应用》这本书中,还分别介绍了如下前沿研究,这些前沿研究在很多场景下都有很重要的应用:

  • 图分类;
  • Link Prediction;
  • 图生成;
  • 图转换;
  • 图匹配;
  • 动态图神经网络;
  • 异质图神经网络;
  • 图神经网络的 AutoML;
  • 图神经网络的自监督学习。

四、图神经网络的应用

1、图神经网络在推荐系统中的应用

图片

我们可以利用会话信息构造异质全局图,然后通过图神经网络学习得到用户或者物品的向量表示,利用这种向量表示去做个性化的推荐。

2、图神经网络在计算机视觉中的应用

图片

我们可以跟踪物体动态的变化过程,通过图神经网络加深对视频的理解。

3、图神经网络在自然语言处理中的应用

图片

我们可以利用图神经网络来理解自然语言的 high-level 的信息。

4、图神经网络在程序分析中的应用

图片

5、图神经网络在智慧城市中的应用

图片

五、问答环节

Q1:GNN 是下一代深度学习的重要方法吗?

A1:图神经网络是非常重要的分支,和图神经网络并驾齐驱的是 Transformer。鉴于图神经网络的灵活性,图神经网络和 Transformer 相互结合,去发挥更大的优势。

Q2:GNN 和因果学习是否可以结合?如何结合?

A2:因果学习重要的环节是因果图,因果图和 GNN 可以天然地结合。因果学习的难点是它的数据量级很小,我们可以利用 GNN 的能力更好地去学习因果图。

Q3:GNN 的可解释性和传统机器学习的可解释性的区别和联系是什么?

A3:在《图神经网络基础、前沿与应用》这本书中会有详细的介绍。

Q4:如何直接基于图数据库、利用图计算的能力进行 GNN 的训练和推理?

A4:目前在统一图计算平台上还没有很好的实践,有一些创业公司和科研团队在做相关方向的探索,这会是一个非常有价值且有挑战的研究方向,比较可行的做法是分领域。

以上是GNN的基础、前沿和应用的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
GNN的基础、前沿和应用GNN的基础、前沿和应用Apr 11, 2023 pm 11:40 PM

近年来,图神经网络(GNN)取得了快速、令人难以置信的进展。图神经网络又称为图深度学习、图表征学习(图表示学习)或几何深度学习,是机器学习特别是深度学习领域增长最快的研究课题。本次分享的题目为《GNN的基础、前沿和应用》,主要介绍由吴凌飞、崔鹏、裴健、赵亮几位学者牵头编撰的综合性书籍《图神经网络基础、前沿与应用》中的大致内容。一、图神经网络的介绍1、为什么要研究图?图是一种描述和建模复杂系统的通用语言。图本身并不复杂,它主要由边和结点构成。我们可以用结点表示任何我们想要建模的物体,可以用边表示两

一文通览自动驾驶三大主流芯片架构一文通览自动驾驶三大主流芯片架构Apr 12, 2023 pm 12:07 PM

当前主流的AI芯片主要分为三类,GPU、FPGA、ASIC。GPU、FPGA均是前期较为成熟的芯片架构,属于通用型芯片。ASIC属于为AI特定场景定制的芯片。行业内已经确认CPU不适用于AI计算,但是在AI应用领域也是必不可少。 GPU方案GPU与CPU的架构对比CPU遵循的是冯·诺依曼架构,其核心是存储程序/数据、串行顺序执行。因此CPU的架构中需要大量的空间去放置存储单元(Cache)和控制单元(Control),相比之下计算单元(ALU)只占据了很小的一部分,所以CPU在进行大规模并行计算

"B站UP主成功打造全球首个基于红石的神经网络在社交媒体引起轰动,得到Yann LeCun的点赞赞赏""B站UP主成功打造全球首个基于红石的神经网络在社交媒体引起轰动,得到Yann LeCun的点赞赞赏"May 07, 2023 pm 10:58 PM

在我的世界(Minecraft)中,红石是一种非常重要的物品。它是游戏中的一种独特材料,开关、红石火把和红石块等能对导线或物体提供类似电流的能量。红石电路可以为你建造用于控制或激活其他机械的结构,其本身既可以被设计为用于响应玩家的手动激活,也可以反复输出信号或者响应非玩家引发的变化,如生物移动、物品掉落、植物生长、日夜更替等等。因此,在我的世界中,红石能够控制的机械类别极其多,小到简单机械如自动门、光开关和频闪电源,大到占地巨大的电梯、自动农场、小游戏平台甚至游戏内建的计算机。近日,B站UP主@

扛住强风的无人机?加州理工用12分钟飞行数据教会无人机御风飞行扛住强风的无人机?加州理工用12分钟飞行数据教会无人机御风飞行Apr 09, 2023 pm 11:51 PM

当风大到可以把伞吹坏的程度,无人机却稳稳当当,就像这样:御风飞行是空中飞行的一部分,从大的层面来讲,当飞行员驾驶飞机着陆时,风速可能会给他们带来挑战;从小的层面来讲,阵风也会影响无人机的飞行。目前来看,无人机要么在受控条件下飞行,无风;要么由人类使用遥控器操作。无人机被研究者控制在开阔的天空中编队飞行,但这些飞行通常是在理想的条件和环境下进行的。然而,要想让无人机自主执行必要但日常的任务,例如运送包裹,无人机必须能够实时适应风况。为了让无人机在风中飞行时具有更好的机动性,来自加州理工学院的一组工

对比学习算法在转转的实践对比学习算法在转转的实践Apr 11, 2023 pm 09:25 PM

1 什么是对比学习1.1 对比学习的定义1.2 对比学习的原理1.3 经典对比学习算法系列2 对比学习的应用3 对比学习在转转的实践3.1 CL在推荐召回的实践3.2 CL在转转的未来规划1 什么是对比学习1.1 对比学习的定义对比学习(Contrastive Learning, CL)是近年来 AI 领域的热门研究方向,吸引了众多研究学者的关注,其所属的自监督学习方式,更是在 ICLR 2020 被 Bengio 和 LeCun 等大佬点名称为 AI 的未来,后陆续登陆 NIPS, ACL,

Michael Bronstein从代数拓扑学取经,提出了一种新的图神经网络计算结构!Michael Bronstein从代数拓扑学取经,提出了一种新的图神经网络计算结构!Apr 09, 2023 pm 10:11 PM

本文由Cristian Bodnar 和Fabrizio Frasca 合著,以 C. Bodnar 、F. Frasca 等人发表于2021 ICML《Weisfeiler and Lehman Go Topological: 信息传递简单网络》和2021 NeurIPS 《Weisfeiler and Lehman Go Cellular: CW 网络》论文为参考。本文仅是通过微分几何学和代数拓扑学的视角讨论图神经网络系列的部分内容。从计算机网络到大型强子对撞机中的粒子相互作用,图可以用来模

用AI寻找大屠杀后失散的亲人!谷歌工程师研发人脸识别程序,可识别超70万张二战时期老照片用AI寻找大屠杀后失散的亲人!谷歌工程师研发人脸识别程序,可识别超70万张二战时期老照片Apr 08, 2023 pm 04:21 PM

​AI面部识别领域又开辟新业务了?这次,是鉴别二战时期老照片里的人脸图像。近日,来自谷歌的一名软件工程师Daniel Patt 研发了一项名为N2N(Numbers to Names)的 AI人脸识别技术,它可识别二战前欧洲和大屠杀时期的照片,并将他们与现代的人们联系起来。用AI寻找失散多年的亲人2016年,帕特在参观华沙波兰裔犹太人纪念馆时,萌生了一个想法。这一张张陌生的脸庞,会不会与自己存在血缘的联系?他的祖父母/外祖父母中有三位是来自波兰的大屠杀幸存者,他想帮助祖母找到被纳粹杀害的家人的照

微软提出自动化神经网络训练剪枝框架OTO,一站式获得高性能轻量化模型微软提出自动化神经网络训练剪枝框架OTO,一站式获得高性能轻量化模型Apr 04, 2023 pm 12:50 PM

OTO 是业内首个自动化、一站式、用户友好且通用的神经网络训练与结构压缩框架。 在人工智能时代,如何部署和维护神经网络是产品化的关键问题考虑到节省运算成本,同时尽可能小地损失模型性能,压缩神经网络成为了 DNN 产品化的关键之一。DNN 压缩通常来说有三种方式,剪枝,知识蒸馏和量化。剪枝旨在识别并去除冗余结构,给 DNN 瘦身的同时尽可能地保持模型性能,是最为通用且有效的压缩方法。三种方法通常来讲可以相辅相成,共同作用来达到最佳的压缩效果。然而现存的剪枝方法大都只针对特定模型,特定任务,且需要很

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器