搜索
首页科技周边人工智能人工智能投资持续放缓,什么样的AI项目和投资策略可以穿越周期?

根据调研机构CB Insights日前发布的“AI状况”季度报告,与资本市场当前状况一致,AI的投资持续放缓。

自上季度以来,AI初创公司的总投资下降了31%,降到2020年第三季度以来的最低水平。大型融资(1亿美元以上)与上季度相比下降39%,创下9个季度以来新低。 

尽管AI融资的停滞将会减缓该领域的发展,但它也促使投资者将更多注意力放在可能实现持续发展的AI项目上。投资者需要了解获得融资的AI初创公司,以对AI行业在未来几个月的发展趋势有大致的了解。 

人工智能投资持续放缓,什么样的AI项目和投资策略可以穿越周期?

AI的商业模式 

AI初创公司是一个模糊的术语,通常适用于所有类型的公司,其范围从专注于提供AI工具(例如MLOps、预测分析工具、无代码/低代码模型开发)到在产品中使用AI的公司(例如使用机器学习预测风险的保险科技公司)。

然而,有一些因素决定了围绕AI和机器学习形成的商业模式的成功。以下是其产品的一些共同原则:

1、产品/市场的契合度:AI产品必须解决未解决的问题,或者在现有的解决方案上提供足够的附加值。 

2、增长策略:必须有可扩展的渠道,让产品向目标用户传递其价值(例如付费广告以及与现有应用的整合)。这些渠道必须是防御性的,并使竞争对手难以抢占市场份额。 

3、目标市场:投资者希望获得投资回报。其产品必须有一个相当大的市场才能增长并达到目标估值。如果产品太小众,很少有人问津,那么投资者也不会有兴趣为其提供资金。

除了上述原则,使用AI和机器学习的产品还必须解决一些其他问题:

1、训练数据:产品团队需要有足够的高质量数据来训练和测试其模型。在某些情况下,这些数据很容易获得(例如公共数据集和企业数据库中的现有数据);在其他方面则比较难以获得(例如健康数据)。对于某些应用,数据在不同的地理区域和受众之间可能存在细微差别,这需要它们自己进行数据收集工作。

2、持续改进:AI和机器学习模型需要随着世界的变化而不断更新。在部署机器学习模型之后,产品团队必须有持续收集数据以更新和改进模型的策略。这种不断的改进也加强了产品对竞争对手的防御能力。 

本着这些原则,根据CB Insights公司的调查报告,需要了解在经济低迷的情况下,AI初创公司是否存在为其AI计划吸引资金的模式。

逆势实现早期融资的AI项目

AI行业早期融资的平均规模一直稳定在300万美元左右。相比之下,中期和后期的交易规模季度环比分别下降了15%和53%。但早期交易的数量已经减少,这意味着AI初创公司将更难为他们的产品创意找到投资。

在CB Insights的报告中提到的种子资金和天使交易中,以色列AI初创厂商Voyantis公在7月获得了1900万美元的资金,用于开发其预测增长平台。

如今的广告环境发生了变化,对用户数据和隐私的规定更加严格,Voyantis致力于解决营销人员面临的这些问题。例如,苹果公司最近在iOS系统中添加了一个功能,允许用户阻止广告商收集他们的设备ID。由于没有用户的详细数据,之前基于规则的广告活动只能提供较差的结果,这将增加每个用户获取成本(CAC)。Voyantis使用机器学习来预测用户行为和终身价值,有助于做出明智的决策,并提高营销活动的投资回报率。

另一家总部位于以色列的生物技术初创厂商Eleven Therapeutics于今年8月获得了2200万美元的种子资金。其专注于RNA治疗,这一领域近年来备受关注,尤其是在新冠疫情蔓延期间。

该公司正在开发一个深度学习框架,用于“生成siRNA分子活性分布的功能数据”。关于该公司的AI技术并没有太多信息,但这是一个有大量可能的市场空间,其财务支持者包括比尔及梅琳达·盖茨基金会。

总部位于美国的初创厂商Spice AI在今年9月获得了1400万美元的种子资金,正在为创建AI驱动的Web3应用程序构建数字基础设施。有趣的是,在加密初创行业境况比其他行业糟糕的时候,这家公司却成功地吸引了投资。

这家公司有三点值得注意:首先,它正在创建数据工程基础设施,以索引主要区块链上的现有数据,这意味着它在获取数据方面没有任何重大障碍。其次,其创始人是微软Azure的资深人士,包括首席技术官Mark Russinovich以及GitHub(2018年被微软收购)的前任和现任CEO。正因为拥有如此知名度的行业人物,即使在最困难的时候,该公司也更容易吸引投资。第三,区块链数据工程在很大程度上是一个尚未解决的问题,随着行业的成熟,Web3公司肯定会面临这个问题,因此这可以被认为是Web3风险较低的项目之一。

谁在AI领域获得了巨额投资? 

在2022年第三季度获得巨额融资的初创公司中,美国初创企业Afresh在今年8月获得了1.15亿美元的B轮融资。该公司使用机器学习帮助杂货店经营者减少高达25%的食物浪费,即平台跟踪新鲜食品的销售,帮助预测未来的客户需求。供应链团队可以使用该平台优化采购,用户可以直接使用该平台向供应商下订单,以减少食物浪费。

该公司已经在美国40个州拥有数千个客户,后续将利用新融资实现业务增长,将市场扩大到其他国家和地区,并增加新功能,以增加其产品的价值和市场覆盖率。

另一家获得巨额投资的公司是总部位于意大利的移动应用开发商Bending Spoons,该公司在今年9月份融资了3.4亿美元。Bending Spoons主要开发移动视频和照片编辑应用程序,这些应用使用机器学习来执行复杂的任务,例如背景删除、自动字幕和照片增强。

该公司的应用采用免费增值模式,用户可以免费使用基本功能,但如果使用高级功能必须付费。成立于2013年的Bending Spoons下载量已超过5亿次,年收入已持续数年超过1亿美元,下一步将利用新融资资金开发新产品和进行收购,向现有客户推销其新产品,并收集更多的数据,进一步扩大相对竞争对手的领先优势。 

穿越周期的AI投资法则

如果深入研究接受融资的AI公司,就会获得更多信息,但注意以下几点:

1、坚持良好的产品原则:无论AI有多好,都需要一个能解决实际问题的产品,它比其他产品要好得多,而且采用的阻力更小。同时AI产品还需要有一个庞大的市场、扩张空间和可持续增长的清晰愿景。

2、B2B AI是最重要的:虽然AI驱动的应用为消费者提供了便利,但它们对企业的价值要大得多,尤其是在经济进入衰退的情况下。实施良好的AI可以减少资金浪费、优化推荐和自动化人工功能,所有这些都会影响AI公司的开支和收入。 

3、在未解决的问题中寻找新的AI市场:在AI领域,已经建立的市场很难被征服,因为现有的AI公司已经拥有更好的数据集来训练他们的模型。而进入新市场更容易,成本更低,特别是如果能在竞争对手之前快速收集数据来训练机器学习模型。 

4、降低获取数据的成本:在数据已经存在并有注释的地方寻找AI创意(例如,金融交易、销售历史、患者病历)。或者寻找生成模型所需数据的解决方案,以减少数据收集的需要。如果企业的应用需要一个新的管道来收集、清理和注释数据,那么将需要更多的时间、人才和资金,这在当前情况下很难实现。

5、拥有知名度高的创始人将会吸引更多投资:大型科技企业工作过的创始人更有可能为AI公司(例如Web3AI的数据基础设施)吸引更多和投资。

以上是人工智能投资持续放缓,什么样的AI项目和投资策略可以穿越周期?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
阅读AI索引2025:AI是您的朋友,敌人还是副驾驶?阅读AI索引2025:AI是您的朋友,敌人还是副驾驶?Apr 11, 2025 pm 12:13 PM

斯坦福大学以人为本人工智能研究所发布的《2025年人工智能指数报告》对正在进行的人工智能革命进行了很好的概述。让我们用四个简单的概念来解读它:认知(了解正在发生的事情)、欣赏(看到好处)、接纳(面对挑战)和责任(弄清我们的责任)。 认知:人工智能无处不在,并且发展迅速 我们需要敏锐地意识到人工智能发展和传播的速度有多快。人工智能系统正在不断改进,在数学和复杂思维测试中取得了优异的成绩,而就在一年前,它们还在这些测试中惨败。想象一下,人工智能解决复杂的编码问题或研究生水平的科学问题——自2023年

开始使用Meta Llama 3.2 -Analytics Vidhya开始使用Meta Llama 3.2 -Analytics VidhyaApr 11, 2025 pm 12:04 PM

Meta的Llama 3.2:多模式和移动AI的飞跃 Meta最近公布了Llama 3.2,这是AI的重大进步,具有强大的视觉功能和针对移动设备优化的轻量级文本模型。 以成功为基础

AV字节:Meta' llama 3.2,Google的双子座1.5等AV字节:Meta' llama 3.2,Google的双子座1.5等Apr 11, 2025 pm 12:01 PM

本周的AI景观:进步,道德考虑和监管辩论的旋风。 OpenAI,Google,Meta和Microsoft等主要参与者已经释放了一系列更新,从开创性的新车型到LE的关键转变

与机器交谈的人类成本:聊天机器人真的可以在乎吗?与机器交谈的人类成本:聊天机器人真的可以在乎吗?Apr 11, 2025 pm 12:00 PM

连接的舒适幻想:我们在与AI的关系中真的在蓬勃发展吗? 这个问题挑战了麻省理工学院媒体实验室“用AI(AHA)”研讨会的乐观语气。事件展示了加油

了解Python的Scipy图书馆了解Python的Scipy图书馆Apr 11, 2025 am 11:57 AM

介绍 想象一下,您是科学家或工程师解决复杂问题 - 微分方程,优化挑战或傅立叶分析。 Python的易用性和图形功能很有吸引力,但是这些任务需要强大的工具

3种运行Llama 3.2的方法-Analytics Vidhya3种运行Llama 3.2的方法-Analytics VidhyaApr 11, 2025 am 11:56 AM

Meta's Llama 3.2:多式联运AI强力 Meta的最新多模式模型Llama 3.2代表了AI的重大进步,具有增强的语言理解力,提高的准确性和出色的文本生成能力。 它的能力t

使用dagster自动化数据质量检查使用dagster自动化数据质量检查Apr 11, 2025 am 11:44 AM

数据质量保证:与Dagster自动检查和良好期望 保持高数据质量对于数据驱动的业务至关重要。 随着数据量和源的增加,手动质量控制变得效率低下,容易出现错误。

大型机在人工智能时代有角色吗?大型机在人工智能时代有角色吗?Apr 11, 2025 am 11:42 AM

大型机:AI革命的无名英雄 虽然服务器在通用应用程序上表现出色并处理多个客户端,但大型机是专为关键任务任务而建立的。 这些功能强大的系统经常在Heavil中找到

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能