搜索
首页科技周边人工智能Meta、CMU联手推出VR史诗级升级!最新HyperReel模型实现高保真6自由度视频渲染

最近,由Meta和卡内基梅隆大学提出的6-DoF视频表征模型——HyperReel,可能预示着一个全新的VR「杀手级」应用即将诞生!

所谓「六自由度视频」(6-DoF),简单来说就是一个超高清的4D体验式回放。

其中,用户可以完全「置身于」动态场景里面,并且可以自由地移动。而当他们任意改变自己的头部位置(3 DoF)和方向(3 DoF)时,与之相应的视图也会随之生成。

图片

论文地址:https://arxiv.org/abs/2301.02238

与之前的工作相比,HyperReel最大的优势在于内存和计算效率,而这两点对于便携式VR头显来说都至关重要。

而且只需采用vanilla PyTorch,HyperReel就能在单张英伟达RTX 3090上,以每秒18帧的速度实现百万像素分辨率的渲染。

图片

太长不看版:

1. 提出一种可在高分辨率下实现高保真度、高帧率的渲染的光线条件采样预测网络,以及一种紧凑且内存高效的动态体积表征;

2. 6-DoF视频表征方法HyperReel结合了以上两个核心部分,可以在实时渲染百万像素分辨率的同时,实现速度、质量和内存之间的理想平衡;

3. HyperReel在内存需求、渲染速度等多个方面均优于其他方法。

论文介绍

体积场景表征(volumetric scene representation)能够为静态场景提供逼真的视图合成,并构成了现有6-DoF视频技术的基础。

然而,驱动这些表征的体积渲染程序,需要在质量、渲染速度和内存效率方面,进行仔细的权衡。

现有的方法有一个弊端——不能同时实现实时性能、小内存占用和高质量渲染,而在极具挑战性的真实场景中,这些都是极为重要的。

为了解决这些问题,研究人员提出了HyperReel——一种基于NeRF技术(神经辐射场)的6-DoF视频表征方法。

其中,HyperReel的两个核心部分是:

1. 一个光线条件下的采样预测网络,能够在高分辨率下进行高保真、高帧率的渲染;

2. 一个紧凑且内存高效的动态体积表征。

与其他方法相比,HyperReel的6-DoF视频管线不仅在视觉质量上表现极佳,而且内存需求也很小。

同时,HyperReel无需任何定制的CUDA代码,就能在百万像素分辨率下实现18帧/秒的渲染速度。

图片

具体来说,HypeReel通过结合样本预测网络和基于关键帧的体积表征法,从而实现了高渲染质量、速度和内存效率之间的平衡。

其中的样本预测网络,既能加速体积渲染,又能提高渲染质量,特别是对于具有挑战性的视图依赖性的场景。

而在基于关键帧的体积表征方面,研究人员采用的是TensoRF的扩展。

这种方法可以在内存消耗与单个静态帧TensoRF大致相同的同时,凑地表征了一个完整的视频序列。

图片

实时演示

接下来,我们就实时演示一下,HypeReel在512x512像素分辨率下动态和静态场景的渲染效果。

值得注意的是,研究人员在Technicolor和Shiny场景中使用了更小的模型,因此渲染的帧率大于40 FPS。对于其余的数据集则使用完整模型,不过HypeReel仍然能够提供实时推理。

图片Technicolor

图片Shiny

图片Stanford

图片Immersive

DoNeRF

实现方法

为了实现HeperReel,首先要考虑的问题,就是要优化静态视图合成的体积表征。

像NeRF这样的体积表征,就是对静态场景在3D空间中的每一个点的密度和外观,进行建模。

更具体地说,通过函数图片将位置x和方向图片沿着⼀条射线映射到颜色图片和密度σ(x)。

此处的可训练参数θ,可以是神经网络权重、N维数组条目,或两者的组合。​

然后就可以渲染静态场景的新视图

图片

其中图片表征从o到图片的透射率。​

在实践中,可以通过沿给定射线获取多个样本点,然后使用数值求积来计算方程式1:

图片

其中权重图片指定了每个样本点的颜色对输出的贡献。​

体积渲染的网格示例

在静态场景的HyperReel中,给定一组图像和相机姿势,而训练目标就是重建与每条光线相关的测量颜色。

大多数场景是由实体物体组成的,这些物体的表面位于3D场景体积内的一个2D流形上。在这种情况下,只有一小部分样本点会影响每条光线的渲染颜色。

因此,为了加速体积渲染,研究人员希望只对非零图片的点,查询颜色和不透明度。

如下图所示,研究人员使用前馈网络来预测一组样本位置图片。具体来说,就是使用样本预测网络图片将射线图片映射到样本点图片,以获取体积等式2中的渲染。

​这里,研究人员使用Plucker的参数化来表征光线。​​

图片

但是这其中有一个问题:给网络太多的灵活性,可能会对视图合成质量产生负面影响。例如,如果(x1, . . . , xn) 是完全任意的点,那么渲染可能看起来不是多视图⼀致的。

为了解决这个问题,研究人员选择用样本预测网络来预测一组几何基元G1, ..., Gn的参数,其中基元的参数可以根据输入射线的不同而变化。为了得到样本点,将射线与每个基元相交。

图片

如图a所示,给定源自相机原点o并沿方向ω传播的输入光线后, 研究人员首先使用Plucker坐标,重新对光线进行参数化。

图片

如图b所示,一个网络将此射线作为输入,输出一组几何基元{}(如轴对齐的平面和球体)和位移矢量{}的参数。​​

图片

如图c所示,为了生成用于体积渲染的样本点{图片},研究人员计算了射线和几何基元之间的交点,并将位移矢量添加到结果中。预测几何基元的好处是使采样信号平滑,易于插值。

位移矢量为采样点提供了额外的灵活性,能够更好地捕捉到复杂的视线依赖的外观。​

图片

如图d所示,最终,研究人员通过公式2进行体积渲染,产生一个像素颜色,并根据相应的观察结果,对它进行了监督训练。

基于关键帧的动态体积

通过上述办法,就可以有效地对3D场景体积进行采样。

如何表征体积呢?在静态情况下,研究人员使用的是内存有效的张量辐射场(TensoRF)方法;在动态情况下,就将TensoRF扩展到基于关键帧的动态体积表征。

下图解释了从基于关键帧的表征中,提取动态的样本点表征的过程。

图片

如图1所示,首先,研究人员使用从样本预测网络输出的速度{},将时间处的样本点{}平移到最近的关键帧中。

图片

然后,如图2所示,研究人员查询了时空纹理的外积,产生了每个样本点的外观特征,然后通过公式10将其转换成颜色。

通过这样的过程,研究人员提取了每个样本的的不透明度。​

图片

结果对比

静态场景的比较

在此,研究人员将HyperReel与现有的静态视图合成方法(包括NeRF、InstantNGP和三种基于采样网络的方法)进行了比较。

  • DoNeRF数据集

DoNeRF数据集包含六个合成序列,图像分辨率为800×800像素。

如表1所示,HyperReel的方法在质量上优于所有基线,并在很大程度上提高了其他采样网络方案的性能。

同时,HyperReel是用vanilla PyTorch实现的,可在单张RTX 3090 GPU上以6.5 FPS的速度渲染800×800像素的图像(或者用Tiny模型实现29 FPS的渲染)。

此外,与R2L的88层、256个隐藏单元的深度MLP相比,研究人员提出的6层、256个隐藏单元的网络外加TensoRF体积骨干的推理速度更快

图片

  • LLFF数据集

LLFF数据集包含8个具有1008×756像素图像的真实世界序列。

如表1所示,HyperReel的方法优于DoNeRF、AdaNeRF、TermiNeRF和InstantNGP,但取得的质量比NeRF略差。

由于错误的相机校准和输入视角的稀疏性,这个数据集对显式体积表征来说是一个巨大的挑战。

图片

动态场景的比较

  • Technicolor数据集

Technicolor光场数据集包含了由时间同步的4×4摄像机装置拍摄的各种室内环境的视频,其中每个视频流中的每张图片都是2048×1088像素。

研究人员将HyperReel和Neural 3D Video在全图像分辨率下对这个数据集的五个序列(Birthday, Fabien, Painter, Theater, Trains)进行比较,每个序列有50帧长。

如表2所示,HyperReel的质量超过了Neural 3D Video,同时每个序列的训练时间仅为1.5个小时(而不是Neural 3D的1000多个小时),并且渲染速度更快。

  • Neural 3D Video数据集

Neural 3D Video数据集包含6个室内多视图视频序列,由20台摄像机以2704×2028像素的分辨率拍摄。

如表2所示,HyperReel在这个数据集上的表现超过了所有的基线方法,包括NeRFPlayer和StreamRF等最新工作。

特别是,HyperReel在数量上超过了NeRFPlayer,渲染速度是其40倍左右;在质量上超过了StreamRF,尽管其采用Plenoxels为骨干的方法(使用定制的CUDA内核来加快推理速度)渲染速度更快。

此外,HyperReel平均每帧消耗的内存比StreamRF和NeRFPlayer都要少得多。

  • 谷歌Immersive数据集

谷歌Immersive数据集包含了各种室内和室外环境的光场视频。

如表2所示,HyperReel在质量上比NeRFPlayer的要好1 dB,同时渲染速度也更快。

图片

有些遗憾的是,HyperReel目前还没有达到VR所要求的渲染速度(理想情况下为72FPS,立体声)。

不过,由于该方法是在vanilla PyTorch中实现的,因此可以通过比如自定义的CUDA内核等工作,来进一步优化性能。

图片

作者介绍

论文一作Benjamin Attal,目前在卡内基梅隆机器人研究所攻读博士学位。研究兴趣包括虚拟现实,以及计算成像和显示。

图片

以上是Meta、CMU联手推出VR史诗级升级!最新HyperReel模型实现高保真6自由度视频渲染的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
中国的'智能” AI助手回应微软召回的隐私缺陷中国的'智能” AI助手回应微软召回的隐私缺陷Apr 24, 2025 am 11:17 AM

与西方同行相比,中国的科技巨头在AI开发方面的课程不同。 他们不专注于技术基准和API集成,而是优先考虑“屏幕感知” AI助手 - AI T

Docker将熟悉的容器工作流程带到AI型号和MCP工具Docker将熟悉的容器工作流程带到AI型号和MCP工具Apr 24, 2025 am 11:16 AM

MCP:赋能AI系统访问外部工具 模型上下文协议(MCP)让AI应用能够通过标准化接口与外部工具和数据源交互。由Anthropic开发并得到主要AI提供商的支持,MCP允许语言模型和智能体发现可用工具并使用合适的参数调用它们。然而,实施MCP服务器存在一些挑战,包括环境冲突、安全漏洞以及跨平台行为不一致。 Forbes文章《Anthropic的模型上下文协议是AI智能体发展的一大步》作者:Janakiram MSVDocker通过容器化解决了这些问题。基于Docker Hub基础设施构建的Doc

使用6种AI街头智能策略来建立一家十亿美元的创业使用6种AI街头智能策略来建立一家十亿美元的创业Apr 24, 2025 am 11:15 AM

有远见的企业家采用的六种策略,他们利用尖端技术和精明的商业敏锐度来创造高利润的可扩展公司,同时保持控制权。本指南是针对有抱负的企业家的,旨在建立一个

Google照片更新解锁了您所有图片的惊人Ultra HDRGoogle照片更新解锁了您所有图片的惊人Ultra HDRApr 24, 2025 am 11:14 AM

Google Photos的新型Ultra HDR工具:改变图像增强的游戏规则 Google Photos推出了一个功能强大的Ultra HDR转换工具,将标准照片转换为充满活力的高动态范围图像。这种增强功能受益于摄影师

Descope建立AI代理集成的身份验证框架Descope建立AI代理集成的身份验证框架Apr 24, 2025 am 11:13 AM

技术架构解决了新兴的身份验证挑战 代理身份集线器解决了许多组织仅在开始AI代理实施后发现的问题,即传统身份验证方法不是为机器设计的

Google Cloud Next 2025以及现代工作的未来Google Cloud Next 2025以及现代工作的未来Apr 24, 2025 am 11:12 AM

(注意:Google是我公司的咨询客户,Moor Insights&Strateging。) AI:从实验到企业基金会 Google Cloud Next 2025展示了AI从实验功能到企业技术的核心组成部分的演变,

为什么AI永远不会真正理解您的感受(为什么很重要)为什么AI永远不会真正理解您的感受(为什么很重要)Apr 24, 2025 am 11:11 AM

情感计算是AI研究的一个分支,旨在破译,模仿和预测人类的情绪。 目的是创建更有帮助,可访问和安全的应用程序。 但是,当机器缺乏CAPAC时,可以真正理解情绪

超越工作:4个竞技场来绘制代理AI中的生活进程超越工作:4个竞技场来绘制代理AI中的生活进程Apr 24, 2025 am 11:09 AM

AI的快速发展需要就其对我们生活的影响进行关键对话。 诸如Anthropic之类的公司已经在为“流氓代理商”开发保障措施,强调了不断增长的自主权和潜在后果

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),