随着人们生活水平的提高,汽车已经进入千家万户。但车辆在提供出行便利的同时,交通事故也成了驾驶员和行人生命安全的重要威胁。
据2018年世界卫生组织不完全统计,道路交通事故是造成人员伤亡和经济损失的重要因素之一。交通事故造成每年近135万人死亡,2000 - 5000万人受伤。每年近3%的国内生产总值被交通事故消耗。
其中,疲劳驾驶是引发交通事故的一个重要因素,仅次于超速。所以,行车安全无小事,哪怕你是“老司机”。
基于驾驶安全问题,近日,来自北京理工大学机械与车辆学院毕路拯教授智能人机系统团队的罗龙溪助理教授和琚佳伟博士生提出了一种智能驾驶辅助系统(简称IDAS),即同步顺序混合脑机接口(hBCIs),结合脑电图(EEG)和肌电图(EMG)信号,对驾驶员的刹车制动和正常驾驶意图进行分类。
简单粗暴地讲,这款智能辅助系统,可以通过识别驾驶员可能遭遇的紧急情况来间接影响车辆控制,也可以在发现紧急情况后直接控制车辆,有效提高驾驶安全性。
该项研究以论文形式发表于英文科技期刊Cyborg and Bionic Systems (类生命系统)上。
混合脑机接口—— hBCI
目前,IDAS的输入信息主要包括车辆和环境、行为、生物信号相关的信息。车辆及周边环境信息主要来源于车辆参数和交通信息。有的IDAS需要检测驾驶员的困倦状态,其他系统则依赖于驾驶行为检测和驾驶意图预测。
那么驾驶员的相关信息是从哪获得呢?答案是通过监测驾驶员脚、四肢和神经的活动来获得。
生物信息的来源包括脑电图(EEG)信号和肌电图(EMG)信号。由于脑电信号的出现较早,基于脑电信号的脑机接口(简称BCIs)已被应用于驾驶行为研究。虽然这些脑电接口在制动意图检测方面取得了很大的进展,但由于脑电信号本身的特性,其检测性能并不稳定。而混合脑机接口(hybrid brain-computer interface, hBCI)作为一种有效的方案,可以解决基于脑电图的脑机接口稳定性低、性能差、可靠性不足等缺点。
根据信号的组合方式,hbci可分为两种模式,采用特征级融合策略(hBCI-FL)和分类器级融合策略(hbci - cl)。第一种模式结合了两种或两种以上的脑电图信号,另一种模式是将EEG和其他信号(如EMG信号和ECG信号)结合起来。
研发人员们邀请13名年龄在24 - 30岁之间的受试者参与了实验。通过采集模拟驾驶过程中的脑电信号、肌电信号和车辆信息,研究了在虚拟驾驶场景中驾驶员硬制动意图的检测。然后,他们利用结合脑电图信号、肌电图信号、车辆信息的hBCI模型,检测出即将到来的紧急刹车意图。
三种驱动意图分类
在实验中,研发团队比较分析了几种同时性和时序性hBCI模型,分别采用光谱特征和时间特征,以及one VS rest或决策树分类策略对三种驱动意图进行多重分类。
“one VS rest”分类策略将三类分类分解为三个并行的二元分类,包括正常驾驶VS其它、软制动VS其它、硬制动VS其它。对于one VS rest分类策略,根据所有二分类器的最大值得到最终结果。
实验结果表明,研发团队的hBCI系统识别硬制动意图的速度比基于踏板偏转的模型快130 m/s。基于光谱特征的hBCI-SE1分类算法和单对单分类策略的分类精度最高,系统平均准确率为96.37%。最后,团队选用最优序次hBCI、最优序次hBCI和基于单脑电信号或肌电信号的模型进行了比较。
结果表明,最优同时性和顺序性的hbci均明显优于基于单脑电或肌电信号的方法。在测试中,得到的结果与离线测试结果吻合较好。
这项研究对于以人为中心的智能辅助驾驶系统,提高驾驶安全性和驾驶舒适性具有一定的参考价值。不过目前该项目还存在一定的局限性。比如,诱导硬制动和软制动的刺激因素多种多样,受试者差异的影响,采集装置的不便等,接下来,团队将解决上述限制,探索更有效的特征和策略融合,从而提高性能。
本研究得到国家自然科学基金(51975052)和北京市自然科学基金(3222021 )的部分资助。
论文地址:
https://downloads.spj.sciencemag.org/cbsystems/aip/9847652.pdf
以上是司机路上的“神助攻”!北理工研发混合脑机接口驾驶辅助系统,提高驾驶安全性的详细内容。更多信息请关注PHP中文网其他相关文章!

在约翰·罗尔斯1971年具有开创性的著作《正义论》中,他提出了一种思想实验,我们应该将其作为当今人工智能设计和使用决策的核心:无知的面纱。这一理念为理解公平提供了一个简单的工具,也为领导者如何利用这种理解来公平地设计和实施人工智能提供了一个蓝图。 设想一下,您正在为一个新的社会制定规则。但有一个前提:您事先不知道自己在这个社会中将扮演什么角色。您最终可能富有或贫穷,健康或残疾,属于多数派或边缘少数群体。在这种“无知的面纱”下运作,可以防止规则制定者做出有利于自身的决策。相反,人们会更有动力制定公

许多公司专门从事机器人流程自动化(RPA),提供机器人以使重复性任务自动化 - UIPATH,在任何地方自动化,蓝色棱镜等。 同时,过程采矿,编排和智能文档处理专业

AI的未来超越了简单的单词预测和对话模拟。 AI代理人正在出现,能够独立行动和任务完成。 这种转变已经在诸如Anthropic的Claude之类的工具中很明显。 AI代理:研究

快速的技术进步需要对工作未来的前瞻性观点。 当AI超越生产力并开始塑造我们的社会结构时,会发生什么? Topher McDougal即将出版的书Gaia Wakes:

产品分类通常涉及复杂的代码,例如诸如统一系统(HS)等系统的“ HS 8471.30”,对于国际贸易和国内销售至关重要。 这些代码确保正确的税收申请,影响每个INV

数据中心能源消耗与气候科技投资的未来 本文探讨了人工智能驱动的数据中心能源消耗激增及其对气候变化的影响,并分析了应对这一挑战的创新解决方案和政策建议。 能源需求的挑战: 大型超大规模数据中心耗电量巨大,堪比数十万个普通北美家庭的总和,而新兴的AI超大规模中心耗电量更是数十倍于此。2024年前八个月,微软、Meta、谷歌和亚马逊在AI数据中心建设和运营方面的投资已达约1250亿美元(摩根大通,2024)(表1)。 不断增长的能源需求既是挑战也是机遇。据Canary Media报道,迫在眉睫的电

生成式AI正在彻底改变影视制作。Luma的Ray 2模型,以及Runway的Gen-4、OpenAI的Sora、Google的Veo等众多新模型,正在以前所未有的速度提升生成视频的质量。这些模型能够轻松制作出复杂的特效和逼真的场景,甚至连短视频剪辑和具有摄像机感知的运动效果也已实现。虽然这些工具的操控性和一致性仍有待提高,但其进步速度令人惊叹。 生成式视频正在成为一种独立的媒介形式。一些模型擅长动画制作,另一些则擅长真人影像。值得注意的是,Adobe的Firefly和Moonvalley的Ma

ChatGPT用户体验下降:是模型退化还是用户期望? 近期,大量ChatGPT付费用户抱怨其性能下降,引发广泛关注。 用户报告称模型响应速度变慢,答案更简短、缺乏帮助,甚至出现更多幻觉。一些用户在社交媒体上表达了不满,指出ChatGPT变得“过于讨好”,倾向于验证用户观点而非提供批判性反馈。 这不仅影响用户体验,也给企业客户带来实际损失,例如生产力下降和计算资源浪费。 性能下降的证据 许多用户报告了ChatGPT性能的显着退化,尤其是在GPT-4(即将于本月底停止服务)等旧版模型中。 这


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

禅工作室 13.0.1
功能强大的PHP集成开发环境

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境