在机器学习的发展过程中,人类的学习方式常常会对各种算法的设计产生启发。而作为人类学习的一个重要范式,通过课程进行学习,已经被借鉴到机器学习中形成了名为课程学习(Curriculum Learning)的研究方向。
普遍而言,人类的教育是通过高度组织化的课程来完成的。每一门课或是每一个学科,都会从简单的内容开始,逐步向学生呈现更复杂的概念。例如,在大学接受微积分的概念之前,一名学生应当先在小学学习算术,在初中学习函数,在高中学习导数。然而与人类教育不同的是,传统机器学习模型的训练都是将数据样本随机输入模型,忽略了数据样本之间不同的复杂性以及模型当前的学习状态。因此,课程学习在机器学习领域的提出,正是为了模仿人类由易到难的学习方式,为模型提供更好的训练策略,从而提升模型的表现。
课程学习概念图
目前课程学习已经广泛应用在机器学习的各个任务中,包括清华大学发布首个课程学习开源库CurML分类、目标检测、语义分割、机器翻译、音频识别、音频增强、视频问答等等,同时也在有监督、无监督和半监督学习以及强化学习等场景下受到大量关注和研究。
随着课程学习的应用和场景日益丰富,特别需要对这一领域进行细致的梳理和归纳,从而推动研究者的深入探索、提升使用者的应用体验。
因此,清华大学朱文武教授所带领的媒体与网络大数据实验室在发表了多篇课程学习学术论文的积累和基础上,实验室成员王鑫在 IEEE TPAMI 发表了关于课程学习的综述论文,实验室进一步发布了全球首个课程学习开源库 CurML (Curriculum Machine Leanring)。
朱文武教授与王鑫助理研究员的课程学习研究工作包括应用于城市兴趣地点推荐的课程元学习方法、基于带噪多反馈信息的课程解耦商品推荐、基于课程学习的共享参数神经架构搜索、以及基于课程难度自适应的组合优化问题求解等等。研究成果发表于 SIGKDD、NeurIPS、ACM MM 等高水平国际机器学习会议上。
部分研究成果框架图
课程学习综述论文则全面回顾了课程学习的产生、定义、理论和应用等各个方面,设计了统一的课程学习框架,并根据框架内的核心组成将课程学习算法分为两个大类和多个小类,区分了课程学习与其他机器学习概念之间的不同和关联,指出了这一领域所面临的挑战和未来可能的研究方向。
课程学习方法分类
课程学习开源库 CurML 是课程学习算法的支持平台,已经集成十多种课程学习算法,同时支持带噪和非带噪两种应用场景,便于研究者和使用者复现、评估、比较以及选择课程学习算法。
CurML 的主体模块是 CL Trainer,它由两个子模块 Model Trainer 和 CL Algorithm 组成,两者间通过五个接口函数进行交互,从而实现课程学习指导的机器学习过程。
CurML 框架图
主体模块:CL Trainer
这一模块是整个开源库的主体部分。通过调用这一模块,使用者仅需几行代码即可实现课程学习算法。在给定数据集、模型和超参数后,模块将进行一定时间的训练,并输出训练后的模型参数和任务的测试结果。这一模块的设计主要是为了满足易用性的要求,因此进行了高度的封装,提供给想要使用课程学习算法但并不在意具体实现细节的使用者。
子模块 1:Model Trainer
这一模块用于完成一般的机器学习过程,例如训练一个清华大学发布首个课程学习开源库CurML分类器或是一个语言模型。同时,它预留了五个接口函数的位置,用于和第二个子模块 CL Algorithm 进行交互,也支持自定义的输入函数。
子模块 2:CL Algorithm
这一模块封装了 CurML 所支持的全部课程学习算法,如下表所示:
模块的实现是通过五个接口函数,分别用于从机器学习过程中获取数据和模型信息,以及指导模型的学习策略,如下图所示。
CurML 流程图
接口函数:data_prepare
这一函数用于从 Model Trainer 模块向 CL Algorithm 模块提供数据集信息。很多课程学习算法需要对数据集有一个整体的了解,才能更好地判断数据样本难度,因此这一接口函数是很有必要的。
接口函数:model_prepare
这一函数与 data_prepare 很类似,区别在于传递的不是数据集信息而是模型训练的相关信息,例如模型架构、参数优化器、学习率调整器等等,很多课程学习算法通过调节这些要素指导机器学习。
接口函数:data_curriculum
这一函数用于计算数据样本难度,并根据数据难度和当前模型状态为模型提供合适的数据,大部分的课程学习都具有类似的思想。
接口函数:model_curriculum
这一函数用于更新模型,调节模型从数据样本中获取的信息量,间接指导模型的学习,目前这类算法的数量还较少,但 CurML 也同样支持这类算法的实现。
接口函数:loss_curriculum
这一函数用于对损失函数值进行重加权,间接调整不同数据对于模型的影响,这类算法在课程学习中较为常见,因为损失值的加权在本质上是一种对数据的软采样。
通过对于十多种近年来课程学习方法的总结,采用上述的模块和接口参数可以统一化实现不同类型的课程学习算法,从而能在公平的场景和任务下对课程学习算法进行评估、比较和选择。
未来展望
CurML 的研发团队表示,在未来他们将不断更新这一开源库,为课程学习的发展和应用提供进一步的支持。
相关链接:
- CurML 开源代码库链接:https://github.com/THUMNLab/CurML
- CurML 开源软件论文链接: https://dl.acm.org/doi/pdf/10.1145/3503161.3548549
- 课程学习综述论文链接:https://ieeexplore.ieee.org/abstract/document/9392296/
- 课程元学习论文链接:https://dl.acm.org/doi/abs/10.1145/3447548.3467132
- 课程解耦学习论文链接:https://proceedings.neurips.cc/paper/2021/file/e242660df1b69b74dcc7fde711f924ff-Paper.pdf
- 课程神经架构搜索论文链接:https://dl.acm.org/doi/abs/10.1145/3503161.3548271
- 课程难度自适应论文链接:https://ojs.aaai.org/index.php/AAAI/article/download/20899/version/19196/20658
以上是清华大学发布首个课程学习开源库CurML的详细内容。更多信息请关注PHP中文网其他相关文章!

作者:楚怡、凯衡等近日,美团视觉智能部研发了一款致力于工业应用的目标检测框架YOLOv6,能够同时专注于检测的精度和推理效率。在研发过程中,视觉智能部不断进行了探索和优化,同时吸取借鉴了学术界和工业界的一些前沿进展和科研成果。在目标检测权威数据集COCO上的实验结果显示,YOLOv6在检测精度和速度方面均超越其他同体量的算法,同时支持多种不同平台的部署,极大简化工程部署时的适配工作。特此开源,希望能帮助到更多的同学。1.概述YOLOv6是美团视觉智能部研发的一款目标检测框架,致力于工业应用。

5月2日消息,目前大多数AI聊天机器人都需要连接到云端进行处理,即使可以本地运行的也配置要求极高。那么是否有轻量化的、无需联网的聊天机器人呢?一个名为MLCLLM的全新开源项目已在GitHub上线,完全本地运行无需联网,甚至集显老电脑、苹果iPhone手机都能运行。MLCLLM项目介绍称:“MLCLLM是一种通用解决方案,它允许将任何语言模型本地部署在一组不同的硬件后端和本地应用程序上,此外还有一个高效的框架,供每个人进一步优化自己用例的模型性能。一切都在本地运行,无需服务器支持,并通过手机和笔

作为一个技术博主,了不起比较喜欢各种折腾,之前给大家介绍过ChatGPT接入微信,钉钉和知识星球(如果没看过的可以翻翻前面的文章),最近再看开源项目的时候,发现了一个ChatGPTWebUI项目。想着刚好之前没有将ChatGPT接入过WebUI,有了这个开源项目可以拿来使用,真是不错,下面是实操的安装步骤,分享给大家。安装官方在Github的项目文档上提供了很多中的安装方式,包括手动安装,docker部署,以及远程部署等方法,了不起在选择部署方式的时候,一开始为了简单想着

深度推荐模型(DLRMs)已经成为深度学习在互联网公司应用的最重要技术场景,如视频推荐、购物搜索、广告推送等流量变现业务,极大改善了用户体验和业务商业价值。但海量的用户和业务数据,频繁地迭代更新需求,以及高昂的训练成本,都对 DLRM 训练提出了严峻挑战。在 DLRM 中,需要先在嵌入表(EmbeddingBags)中进行查表(lookup),再完成下游计算。嵌入表常常贡献 DLRM 中 99% 以上的内存需求,却只贡献 1% 的计算量。借助于 GPU 片上高速内存(High Bandwidth

自从Midjourney发布v5之后,在生成图像的人物真实程度、手指细节等方面都有了显著改善,并且在prompt理解的准确性、审美多样性和语言理解方面也都取得了进步。相比之下,StableDiffusion虽然免费、开源,但每次都要写一大长串的prompt,想生成高质量的图像全靠多次抽卡。最近StabilityAI的官宣,正在研发的StableDiffusionXL开始面向公众测试,目前可以在Clipdrop平台免费试用。试用链接:https://clipdrop.co/stable-diff

在人类的感官中,一张图片可以将很多体验融合到一起,比如一张海滩图片可以让我们想起海浪的声音、沙子的质地、拂面而来的微风,甚至可以激发创作一首诗的灵感。图像的这种「绑定」(binding)属性通过与自身相关的任何感官体验对齐,为学习视觉特征提供了大量监督来源。理想情况下,对于单个联合嵌入空间,视觉特征应该通过对齐所有感官来学习。然而这需要通过同一组图像来获取所有感官类型和组合的配对数据,显然不可行。最近,很多方法学习与文本、音频等对齐的图像特征。这些方法使用单对模态或者最多几种视觉模态。最终嵌入仅

刚刚,哥伦比亚大学系统生物学助理教授 Mohammed AlQuraishi 在推特上宣布,他们从头训练了一个名为 OpenFold 的模型,该模型是 AlphaFold2 的可训练 PyTorch 复现版本。Mohammed AlQuraishi 还表示,这是第一个大众可用的 AlphaFold2 复现。AlphaFold2 可以周期性地以原子精度预测蛋白质结构,在技术上利用多序列对齐和深度学习算法设计,并结合关于蛋白质结构的物理和生物学知识提升了预测效果。它实现了 2/3 蛋白质结构预测的卓

当前,非英文文图生成模型选择有限,用户往往要将prompt翻译成英语再输入模型。这样不仅会造成额外的操作负担,并且翻译过程中的语言文化误差,会影响生成图片的准确性。智源研究院FlagAI团队首创高效训练方式,使用多语言预训练模型和StableDiffusion结合,训练多语言文图生成模型——AltDiffusion-m18,支持18种语言的文图生成。包括中文、英文、日语、泰语、韩语、印地语、乌克兰语、阿拉伯语、土耳其语、越南语、波兰语、荷兰语、葡萄牙语、意大利语、西班牙语、德语、法语、俄语。Hu


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3汉化版
中文版,非常好用

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能