搜索
首页科技周边人工智能谷歌开源首个「方言」数据集:让机器翻译更地道

谷歌开源首个「方言」数据集:让机器翻译更地道

Apr 08, 2023 am 10:51 AM
谷歌数据集机器翻译

虽然全中国的人都在说汉语,但具体到各地的方言却略有不同,比如同样是小巷的意思,「胡同」一开口就知道是老北京了,而到了南方则叫「弄」。

这种细微的地域性差异反应在「机器翻译」任务上,就会显得翻译结果不够「地道」,而目前几乎所有的机器翻译系统都没有考虑地区性语言(即方言)的影响。

而在世界范围内也存在这种现象,比如巴西的官方语言是葡萄牙语,跟欧洲的葡萄牙语之间也有一些地域性差异。

最近谷歌发布了一个全新的,可用于Few-shot Region-aware机器翻译的数据集和评估基准FRMT,主要解决方言翻译问题,论文发表在TACL(Transactions of the Association for Computational Linguistics)上。

图片

论文链接:https://arxiv.org/pdf/2210.00193.pdf

开源链接:https://github.com/google-research/google-research/tree/master/frmt

该数据集包括从英语到葡萄牙语和中文普通话的两个地区变体的专业翻译,源文档是为了能够详细分析感兴趣的现象,包括词汇上不同的术语和干扰术语。

研究人员探索了 FRMT 的自动评估指标,并在区域匹配和不匹配评分情景下验证了其与专家人工评估的相关性。

最后,为这项任务提出了一些基线模型,并为研究人员如何训练、评估和比较自己的模型提供指导建议,数据集和评估代码已开源。

Few-Shot泛化

大多数现代机器翻译系统都经过数百万或数十亿翻译样本的训练,输入数据包括英语输入句及其相应的葡萄牙语翻译。

然而,绝大多数可用的训练数据并没有说明翻译的地区差异。

鉴于这种数据稀缺性,研究人员将 FRMT 定位为few-shot翻译的基准,当给定每种语言不超过100个带标签的例子时,测量机器翻译模型识别出指定区域语言变体的能力。

机器翻译模型需要根据少量标记过的样本(即范例)中显示的语言模式,来识别出其他未标记训练样本中的相似模式。模型需要通过这种方式进行泛化,从而生成模型中没有明确指定区域的「地道」翻译结果。

图片

比如输入句子:The bus arrived,再给定几个巴西葡萄牙语的例子,模型应该能翻译出「O ônibus chegou」;如果给的样例是欧洲葡萄牙语,模型的翻译结果应该变为「O autocarro chegou」。

机器翻译的few-shot方法是很有研究价值的,能够以一种非常简单的方式来对现有系统中增加对额外区域语言的支持能力。

虽然谷歌目前发表的工作是针对两种语言的区域变体,但研究人员预测,一个好的方法将很容易适用于其他语言和区域的变体。

从原理上来说,这些方法也适用于其他语言差异现象,例如礼节和风格等。

数据收集

FRMT 数据集包括部分英文维基百科文章,来源于 Wiki40b 数据集,这些文章已经由付费的专业翻译人员翻译成不同的地区性的葡萄牙语和汉语。

图片

为了突出关键区域感知的翻译难题,研究人员使用了三个内容桶(content buckets)来设计数据集:

1. 词汇 Lixical

词汇桶主要关注不同地区在词汇选择上的差异,例如当把一个带有单词「bus」的句子分别翻译成巴西语和欧洲葡萄牙语时,模型需要能够识别出「ônibus」与「autocarro」的区别。

研究人员根据博客和教育网站手动收集了20-30个具有地区特色的翻译术语,并根据来自每个地区的母语志愿者的反馈对翻译进行过滤和审核。

根据得到的英语术语列表,从相关的英语维基百科文章(例如,bus)中提取出100个句子。再对普通话,重复上述相同的的收集过程。

图片

2. 实体 Entity

实体桶以类似的方式填充,涉及的人、位置或其他实体与某一特定语言所涉两个区域之一有着密切联系。

比如给定一个说明性的句子,如「In Lisbon, I often took the bus.」(在里斯本,我经常坐公共汽车。),为了正确地将其翻译成巴西葡萄牙语,模式必须能够识别出两个潜在的陷阱:

1)里斯本和葡萄牙之间更密切的地理关联可能会影响模型翻译的选择,从而帮助模型判断出应该翻译成欧洲葡萄牙语而非巴西葡萄牙语,即选择「autocarro」而不是「ônibus」。

2)用「巴西利亚」代替「里斯本」可能是一个比较简单的方式,对于同一个模式,对巴西葡萄牙语本地化其输出,即便翻译结果仍然很流畅,但也可能会导致不准确的语义。

3. 随机 Random

随机桶用于检查一个模型是否正确处理了其他不同的现象,包含从维基百科的featured和good)集合中随机抽取的100篇文章。

图片

系统性能

为了验证为 FRMT 数据集收集的翻译能够捕获特定区域的现象,研究人员对数据质量进行了人工评估。

来自每个相应区域的专家标注员使用多维质量度量(MQM)框架来识别和分类翻译中的错误:该框架包括一个分类加权方案,将识别出的错误转换成一个单一的分数,粗略地表示每句话的主要错误数量,即数值越小表示翻译越好。

对于每个地区,研究人员要求 MQM 评分者对来自他们所在地区的翻译和来自他们语言的其他地区的翻译进行评分。

例如,巴西的葡萄牙语评分员同时对巴西和欧洲的葡萄牙语译本都进行了评分,两个分数之间的差异表明语言现象的普遍性,即该语言变体是否可接受,而并非是另一种语言。

实验结果发现,在葡萄牙语和汉语中,评分者平均比匹配的译文中每个句子多发现大约两个主要错误,表明FRMT数据集确实能够捕获特定区域的语言现象。

虽然人工评估是确保模型质量的最佳方法,但其往往是缓慢且昂贵的。

因此,研究人员希望找到一个现成的自动度量指标,可以用来评估模型在基准中的性能,研究人员考虑选择使用 chrF,BLEU 和 BLEURT.

图片

根据 MQM 评估者对几个基线模型翻译结果的评分,可以发现 BLEURT 与人类判断具有最好的相关性,并且该相关性的强度(0.65 Pearson 相关系数,ρ)与标注者间一致性(0.70组内相关性)相当。

系统性能

文中评估了一些最近发布的、具有few-shot控制能力的模型。

基于 MQM 的人类评估,基线方法都表现出一定的localize葡萄牙语输出的能力,但是对于中文普通话,大多没有利用目标地区的知识来生成优秀的当地翻译结果。

在评估的基准中,谷歌的语言模型 PaLM 模型的性能最佳,为了使用 PaLM 生成针对区域的翻译,首先将一个有指导意义的提示输入模型,然后从中生成文本以填充空白。

图片

PaLM 仅通过一个例子就获得了很好的结果,在葡萄牙语方面,当增加到10个例子时,质量略有提高,考虑到 PaLM 是在无监督的情况下进行训练的,这种表现已经非常好了。

研究结果还表明,像 PaLM 这样的语言模型可能特别擅长记忆流畅翻译所需的特定区域的词汇选择。

图片

然而,在 PaLM 和人类之间仍然存在显著的性能差距。

参考资料:

https://ai.googleblog.com/2023/02/frmt-benchmark-for-few-shot-region.html

以上是谷歌开源首个「方言」数据集:让机器翻译更地道的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
如何使用LM Studio在本地运行LLM? - 分析Vidhya如何使用LM Studio在本地运行LLM? - 分析VidhyaApr 19, 2025 am 11:38 AM

轻松在家运行大型语言模型:LM Studio 使用指南 近年来,软件和硬件的进步使得在个人电脑上运行大型语言模型 (LLM) 成为可能。LM Studio 就是一个让这一过程变得轻松便捷的优秀工具。本文将深入探讨如何使用 LM Studio 在本地运行 LLM,涵盖关键步骤、潜在挑战以及在本地拥有 LLM 的优势。无论您是技术爱好者还是对最新 AI 技术感到好奇,本指南都将提供宝贵的见解和实用技巧。让我们开始吧! 概述 了解在本地运行 LLM 的基本要求。 在您的电脑上设置 LM Studi

盖伊·佩里(Guy Peri)通过数据转换帮助麦考密克的未来盖伊·佩里(Guy Peri)通过数据转换帮助麦考密克的未来Apr 19, 2025 am 11:35 AM

盖伊·佩里(Guy Peri)是麦考密克(McCormick)的首席信息和数字官。尽管他的角色仅七个月,但Peri正在迅速促进公司数字能力的全面转变。他的职业生涯专注于数据和分析信息

迅速工程中的情感链是什么? - 分析Vidhya迅速工程中的情感链是什么? - 分析VidhyaApr 19, 2025 am 11:33 AM

介绍 人工智能(AI)不仅要理解单词,而且要理解情感,从而以人的触感做出反应。 这种复杂的互动对于AI和自然语言处理的快速前进的领域至关重要。 Th

12个最佳数据科学工作流程的AI工具-Analytics Vidhya12个最佳数据科学工作流程的AI工具-Analytics VidhyaApr 19, 2025 am 11:31 AM

介绍 在当今以数据为中心的世界中,利用先进的AI技术对于寻求竞争优势和提高效率的企业至关重要。 一系列强大的工具使数据科学家,分析师和开发人员都能构建,Depl

AV字节:OpenAI的GPT-4O Mini和其他AI创新AV字节:OpenAI的GPT-4O Mini和其他AI创新Apr 19, 2025 am 11:30 AM

本周的AI景观爆炸了,来自Openai,Mistral AI,Nvidia,Deepseek和Hugging Face等行业巨头的开创性发行。 这些新型号有望提高功率,负担能力和可访问性,这在TR的进步中推动了

报告发现,困惑的Android应用程序有安全缺陷。报告发现,困惑的Android应用程序有安全缺陷。Apr 19, 2025 am 11:24 AM

但是,该公司的Android应用不仅提供搜索功能,而且还充当AI助手,并充满了许多安全问题,可以将其用户暴露于数据盗用,帐户收购和恶意攻击中

每个人都擅长使用AI:关于氛围编码的想法每个人都擅长使用AI:关于氛围编码的想法Apr 19, 2025 am 11:17 AM

您可以查看会议和贸易展览中正在发生的事情。您可以询问工程师在做什么,或咨询首席执行官。 您看的任何地方,事情都以惊人的速度发生变化。 工程师和非工程师 有什么区别

火箭发射模拟和分析使用Rocketpy -Analytics Vidhya火箭发射模拟和分析使用Rocketpy -Analytics VidhyaApr 19, 2025 am 11:12 AM

模拟火箭发射的火箭发射:综合指南 本文指导您使用强大的Python库Rocketpy模拟高功率火箭发射。 我们将介绍从定义火箭组件到分析模拟的所有内容

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境