搜索
首页科技周边人工智能重新审视AI,神经网络中概念符号涌现的发现与证明

本文围绕近期的两项工作,讨论神经网络中符号概念的涌现现象,即『深度神经网络的表征是否是符号化的』的问题。如果我们绕开 “应用技术提升” 的视角,从 “科学发展” 的角度来重新审视 AI,证明 AI 模型中的符号涌现现象无疑是具有重大意义的。

1. 首先,目前大部分的可解释性研究都在试图将神经网络解释为一个 “清晰的”、“语义化的”、或 “逻辑化的” 模型。但是,如果无法证明神经网络的符号涌现,如果神经网络内在表征成分真的有大量的混乱成分,那么大部分的可解释性研究就失去了其基本事实依据。

2. 其次,如果无法证明神经网络的符号涌现,深度学习的发展将会大概率困在 “结构”、“损失函数”、“数据” 等外围因素的层面,而无法直接高层的认知层面去实现知识层面的交互式学习。往这个方向发展需要更干净清晰的理论支撑。

因此,本文主要从以下三个方面介绍。

1. 如何去定义神经网络所建模的符号化概念,从而可靠地发现神经网络的符号涌现现象。

2. 为什么所量化的符号化概念可以认为是可信的概念(稀疏性、对神经网络表征的 universal matching、迁移性、分类性、对历史解释性指标的解释)。

3. 如何证明符号化概念的涌现 —— 即理论证明当 AI 模型在某些情况下(一个并不苛刻的条件),AI 模型的表征逻辑可以解构为极少数的可迁移的符号化概念的分类效用(这部分会在 4 月底公开讨论)。

图片

论文地址:https://arxiv.org/pdf/2111.06206.pdf


图片

论文地址:https://arxiv.org/pdf/2302.13080.pdf

该研究作者包括上海交通大学硕士二年级学生李明杰、上海交通大学博士三年级学生任洁,李明杰和任洁都师从张拳石老师。他们所在的实验室团队常年做神经网络可解释性的研究。对于可解释性领域,研究者可以从不同角度来分析,有解释表征的,有解释性能的,有相对可靠合理的,也有不合理的。但是,深入讨论下去,对神经网络的解释有两个根本的愿景,即「能否清晰且严谨地表示出神经网络所建模的概念」「能否准确解释出决定神经网络性能的因素」。

在「解释神经网络所建模的概念」这一方向上,所有研究者都必须面对的一个核心问题 ——“神经网络的表征到底是不是符号化概念化的”。如果这个问题回答不清楚,那么后续的研究很难进行 —— 如果神经网络的表征本身都是混乱的,然后研究者强行用一堆 “符号化的概念” 或 “因果逻辑” 去解释,这样一来方向就错了?对神经网络符号化表征的假设,是进行深入研究该领域的基础,但是对此问题的论证往往让人无从下手。

大部分研究者对神经网络的第一直觉是 “它不可能是符号化的吧?” 神经网络毕竟不是图模型。在一篇由 Cynthia 等人撰写的论文中《Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead》 [3],,让人们误以为对神经网络的事后解释(post-hoc explanation)天然地是不可靠的。

那么,神经网络内在表征真的是非常混乱的?而不是清晰的、稀疏的、符号化的吗?围绕这个问题,我们定义了博弈交互 [4,5],证明了神经网络表征瓶颈 [6],研究了神经网络对视觉概念表征的特点 [7,8],从而证明了交互概念与神经网络泛化和鲁棒性的关系 [9,10,11,12],进而完善了沙普利值 [13],但是实验室前期仅仅围绕 “符号化表征” 核心的周边进行探索,始终无法直接探索神经网络表征是否是符号化的

这里我们先说结论 —— 在大部分情况下,神经网络的表征是清晰的、稀疏的、符号化的。这个结论背后有大量的理论证明,以及大量的实验论证。在理论方面,我们目前的研究证明了一些可以支撑 “符号化” 的特性,但是目前证明还不足以对 “符号化表征” 给出严谨明确的解答。未来几个月,我们会有更加严谨、全面的证明。

如何定义神经网络所建模的概念

在分析神经网络之前,我们需要明确 “如何定义网络所建模的概念”。实际上,对于这一问题,之前已经有了相关研究 [14,15],并且实验结果也比较优异 —— 但是,我们认为,“概念” 的定义在理论上应有 “严谨性” 的数学保证。

因此,我们在论文 [1] 中定义了 I(S) 这一指标,用来量化概念 S 对于网络输出的效用,这里 S 指的是组成这一概念的所有输入变量的集合。例如,给定一个神经网络和一个输入句子 x=“I think he is a green hand.”,每个单词可以看成网络的其中一个输入变量,句中的三个词 “a”,“green”,“hand” 可以构成一个潜在的概念 S={a,green,hand}。每个概念 S 表示了 S 中输入变量之间的 “与” 关系:当且仅当 S 中的输入变量全部出现时,这一概念才被触发,从而为网络输出贡献 I (S) 的效用。而当 S 中任意变量被遮挡时,I (S) 这部分效用就从原本的网络输出中移除了。例如,对于 S={a,green,hand} 这一概念,如果把输入句子中的 “hand” 一词遮挡,那么这一概念就不被触发,网络输出中也不会包含这一概念的效用 I (S)。

我们证明了神经网络输出总可以被拆分为所有触发概念效用之和。即在理论上,对于一个包含 n 个输入单元的样本,最多有

图片

 种不同的遮挡方式,我们总可以用『少量概念』的效用来『精确拟合』神经网络『所有

图片

种』不同遮挡样本上的输出值,从而证明了 I (S) 的『严谨性』。下图给了一个简单的例子。

图片

图片

进一步,我们在论文 [1] 中证明了 I (S) 满足博弈论中 7 条性质,进一步说明了这一指标的可靠性。

图片

除此以外,我们还证明了博弈交互概念 I (S) 能够解释博弈论中大量经典指标的基本机理,比如 Shapley value [16]、Shapley interaction index [17],以及 Shapley-Taylor interaction index [18]。具体地,我们可以将这三种指标表示为交互概念的不同线性和的形式。

图片

实际上,课题组的前期工作已经基于博弈交互概念指标来定义 Shapley value 的最优基准值 [13],并探索视觉神经网络所建模的『原型视觉概念』及其『美观度』[8]。

神经网络是否建模了清晰、符号化的概念表征

有了这一指标,我们进一步探索上面提到的核心问题:神经网络是否真的能从训练任务中总结出清晰的、符号化的、概念化的表征?所定义的交互概念真的能表示一些有意义的 “知识”,还是仅仅是一个纯粹从数学上凑出来的没有明确意义的 tricky metrics?为此,我们从以下四个方面回答这一问题 —— 符号化概念化的表征应当满足稀疏性、样本间迁移性、网络间迁移性,以及分类性。

要求一(概念稀疏性):神经网络所建模的概念应当是稀疏的

不同于连结主义,符号主义的一个特性在于人们希望用少量的、稀疏的概念来表示网络学到的知识,而不是用大量、稠密的概念。实验中我们发现,在大量潜在概念中,仅有非常少量的显著概念。即大部分交互概念的交互效用 I (S) 趋近于 0,故可以忽略,仅有极少量的交互概念有较显著的交互效用 I (S),这样神经网络的输出仅仅决定于少量概念的交互效用。换句话说,神经网络对于每个样本的推断可以被简洁地解释为少量显著概念的效用。

图片

要求二(样本间迁移性):神经网络所建模的概念在不同样本间应当具有迁移性

在单个样本上满足稀疏性是远远不够的,更重要的是,这些稀疏的概念表达应当能够在不同样本之间互相迁移。如果同一个交互概念可以在不同样本中表征,如果不同样本总提取出类似的交互概念,那么这个交互概念更可能代表一种有意义的普适的知识。反之,如果大部分交互概念仅仅在一两个特定样本上有表征,那么这样所定义的交互更倾向于一个仅有数学定义但没有物理意义的 tricky metric。在实验中,我们发现,往往存在一个较小的概念字典,它能够解释神经网络为同类别样本所建模的大部分概念。

图片

我们也可视化了一些概念,并且发现,相同的概念通常对不同的样本产生类似的效果,这也验证了概念在不同样本之间的迁移性。

图片

要求三(网络间迁移性):不同神经网络所建模的概念之间应当具有迁移性

类似地,这些概念应当能够被不同的神经网络稳定地学到,无论是不同初始化的网络,还是不同架构的网络。虽然神经网络可以设计为全然不同的架构,建模不同维数的特征,但是如果不同的神经网络面对同一个具体任务可以实现『殊途同归』,即如果不同神经网络都可以稳定地学习到类似的一组交互概念,那么我们可以认为这组交互概念是面向这个任务的根本的表征。比如,如果不同的人脸检测网络都不约而同地建模了眼睛、鼻子、嘴之间的交互,那么我们可以认为这样的交互是更 “本质的”“可靠的”。在实验中,我们发现,越显著的概念越容易被不同的网络同时学到,相对比例的显著交互是被不同神经网络所共同建模的。

图片

要求四(概念分类性):神经网络所建模的概念应当具有分类性

最后,对于分类任务而言,如果一个概念具有较高的分类性,那么它应当为大多数样本上的分类起到一致的正向作用(或是一致的负向作用)。较高的分类性可以验证这个概念可以独立地承担分类任务,从而更大可能的是一个可靠的概念,而不是不成熟的中间特征。我们同样设计了实验来验证这一性质,发现神经网络建模的概念往往具有较高的分类性。

图片

综上所述,上面的四个方面表明,在大部分情况下,神经网络的表征是清晰的、稀疏的、符号化的。当然,神经网络也并不是每时每刻都能够建模这种清晰、符号化的概念,在少数极端情况下,神经网络学不到稀疏、可迁移的概念,具体请看我们的论文 [2]。

此外,我们还利用此交互来解释了大模型[22]。

神经网络的符号化表征在神经网络可解释性中的意义

1. 从可解释性领域发展的角度来看,最直接的意义就是为 “概念层面解释神经网络” 找到了一定的依据。如果神经网络本身的表征都不是符号化的,那么从符号化概念层面对神经网络的解释就只能是隔靴搔痒,解释的结果一定是似是而非的,并不能实质性的推导深度学习进一步的发展。

2. 从 2021 年开始,我们逐步构建了一个基于博弈交互的理论体系。发现基于博弈交互,我们可以统一解释两个核心问题 “怎样量化神经网络所建模的知识” 和 “怎样解释神经网络的表征能力”。在 “怎样量化神经网络所建模的知识” 方向上,除了本文提到的两个工作之外,课题组的前期工作已经基于博弈交互概念指标,来定义 Shapley value 的最优基准值 [13],并探索视觉神经网络所建模的『原型视觉概念』及其『美观度』[7,8]。

3. 在 “怎样解释神经网络的表征能力” 方向上,课题组证明了神经网络对不同交互的表征瓶颈 [6],研究了神经网络如何通过其所建模的交互概念来确定其泛化性 [12,19],研究神经网络所建模的交互概念与其对抗鲁棒性和对抗迁移性的关系 [9,10,11,20],证明了贝叶斯神经网络更难以建模复杂交互概念 [21]。

更多阅读请参考:

​https://zhuanlan.zhihu.com/p/264871522/​

以上是重新审视AI,神经网络中概念符号涌现的发现与证明的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
AI的人类方面:福祉和四人底线AI的人类方面:福祉和四人底线Apr 17, 2025 am 11:28 AM

重新构想影响:四倍的底线 长期以来,对话一直以狭义的AI影响来控制,主要集中在利润的最低点上。但是,更全面的方法认识到BU的相互联系

您应该知道的5个改变游戏规则的量子计算用例您应该知道的5个改变游戏规则的量子计算用例Apr 17, 2025 am 11:24 AM

事情正稳步发展。投资投入量子服务提供商和初创企业表明,行业了解其意义。而且,越来越多的现实用例正在出现以证明其价值超出

如何微调AI提示工作中的竞争优势如何微调AI提示工作中的竞争优势Apr 17, 2025 am 11:23 AM

您急于满足截止日期,并决定使用Chatgpt创建营销电子邮件。您输入AI提示:“写一条专业的100字营销电子邮件”。结果是缺乏音调或Struc的通用,术语的文件

SQL中的等级功能SQL中的等级功能Apr 17, 2025 am 11:20 AM

介绍 想象一下,需要从成千上万的交易和许多促成因素中确定您公司的最高销售代表。 传统方法变得麻烦。 SQL的排名功能为召集提供了有效的解决方案

潜在的医疗补助削减威胁孕产妇医疗保健潜在的医疗补助削减威胁孕产妇医疗保健Apr 17, 2025 am 11:18 AM

众议院和参议院都同意在周末进行预算框架。该框架要求削减支出,以支付削减税收的费用,这些减税量不成比例,以防止赤字增加,同时也增加

Snowflake首席执行官说,AI ROI始于正确获取数据Snowflake首席执行官说,AI ROI始于正确获取数据Apr 17, 2025 am 11:13 AM

雪花首席执行官在坐下来告诉我:“人工智能不应该是大爆炸。” “这应该是一系列小项目,显示出每一步的价值。”但是,正如拉马斯瓦米(Ramaswamy)指出的那样,虽然这听起来可能谨慎,但实际上是策略。 在中间

每天上传到Deezer的20,000个AI生成的歌曲每天上传到Deezer的20,000个AI生成的歌曲Apr 17, 2025 am 11:11 AM

Deezer的首席创新官Aurelien Herault在一份声明中说:“ AI产生的内容继续传到Deezer等洪水流媒体平台,我们没有看到它放慢速度的迹象。” 虽然没有减轻洪水的迹象,但Deezer确实有

从体育场到场外:AI如何重塑体育的未来从体育场到场外:AI如何重塑体育的未来Apr 17, 2025 am 11:10 AM

这种转变不再是理论上的。 卡夫集团(Kraft Group) - 新英格兰爱国者队,新英格兰革命和吉列特体育场(Gillette Stadium)的所有者 - 刚刚宣布与NWN建立战略合作伙伴关系,以现代化和转变KR的技术

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中