在解释SoMin公司的广告文案和横幅生成功能时,经常有人会问,是否用ChatGPT取代了GPT-3,或者是否仍然在运行过时的模式。
在解释SoMin公司的广告文案和横幅生成功能时,经常有人会问,是否用ChatGPT取代了GPT-3,或者是否仍然在运行过时的模式。“我们没有,也不打算这样做。”SoMin公司发言人给出这样的回答,尽管OpenAI公司推出的ChatGPT这款聊天机器人正在蓬勃发展。这往往会让客户大吃一惊,以下解释一下他为什么要给出这样的回答。
在人工智能模型中占有一席之地
GPT-2、GPT-3、ChatGPT以及最近推出的GPT-4都属于同一类人工智能模型——Transformer。这意味着,与上一代机器学习模型不同,它们被训练来完成更统一的任务,因此它们不需要为每个特定的任务重新训练来产生可行的结果。后者解释了它们的巨大规模(在GPT-3的例子中有1750亿个参数),而一个模型可能需要“记住整个互联网”,才能足够灵活地根据用户输入在不同的数据片段之间切换。然后,当用户输入查询的问题,描述任务和几个示例(就像你向图书管理员询问感兴趣的书籍一样)时,模型能够生成结果。这种方法被称为“小样本学习”(Few-Shot Learning),最近在为现代Transformer模型提供输入已成为一种趋势。
但是,为了完成当前的任务,是否总是需要掌握所有的互联网知识呢?当然不是——在很多情况下,就像ChatGPT一样,需要大量 (数以百万计)特定于任务的数据样本,这些样本将允许模型启动“从人类反馈中强化学习(RLHF)”过程。反过来,RLHF将衍生出人工智能和人类之间进行的协作训练过程,以进一步训练人工智能模型,以产生类似人类的对话。因此,ChatGPT不仅在聊天机器人场景中表现出色,而且还帮助人们编写短篇内容(例如诗歌或歌词)或长篇内容(例如论文);当人们需要快速获得答案时,可以采用简单的术语或深入的知识解释复杂的话题;提供头脑风暴、新的话题和想法,这在创作过程中是有帮助的,支持销售部门进行个性化沟通,例如生成电子邮件进行回复。
虽然从技术上来说,大型Transformer模型可以尝试完成这些任务,但不太可能由ChatGPT甚至GPT-4来完成——这是因为ChatGPT和其他OpenAI的Transformer对世界发生的事件了解非常有限,因为它们是预训练的模型,因此由于模型再训练的计算需求非常大,因此它们的数据更新不够频繁。这可能是迄今为止OpenAI(以及其他任何公司)所生成的所有预训练模型中最大的缺点。一个更大的问题是针对ChatGPT的:与GPT-3不同,它是在一个非常集中的对话数据集上进行训练的,因此,只有在对话任务中ChatGPT才能超越它的前辈,而在完成其他人类生产力任务时,它就不那么先进。
成长中的大型语言模型家族
人们现在知道ChatGPT只是GPT-3的一个更小、更具体的版本,但这是否意味着在不久的将来会有更多这样的模型出现:用于营销的MarGPT,用于数字广告的AdGPT,用于回答医疗问题的MedGPT?
这是有可能的,其原因如下:当SoMin公司提交一份申请以获得GPT-3 Beta的访问权限时,尽管填写了一份冗长的申请表,详细解释了将要构建的当前软件,但被要求同意提供关于每天如何使用模型以及所收到的结果的反馈。OpenAI公司这样做是有原因的,主要是因为这是一个研究项目,他们需要对模型的最佳应用进行商业洞察,他们通过众筹来换取参与这场伟大的人工智能革命的机会。聊天机器人应用程序似乎是最受欢迎的应用程序之一,所以ChatGPT首先出现。ChatGPT不仅规模更小(200亿个参数vs.1750亿个参数),而且比GPT-3更快,而且在解决会话任务时比GPT-3更准确——对于低成本/高质量的人工智能产品来说,这是一个完美的商业案例。
那么,对于生成式人工智能来说,规模越大越好吗?其答案是,要视情况而定。当人们正在构建一个能够完成许多任务的通用学习模型时,其答案是肯定的,其规模越大越好,GPT-3比GPT-2和其他前辈的优势证明了这一点。但是,当人们想要很好地完成一项特定的任务时,就像ChatGPT中的聊天机器人一样,那么与模型和数据大小相比,数据焦点和适当的训练过程要重要得多。这就是为什么在SoMin公司没有使用ChatGPT来生成文案和横幅的原因,而是利用特定的数字广告相关数据来指导GPT-3为尚未看到的新广告制作更好的内容。
那么,有人可能会问,生成式人工智能的未来将如何发展?多模态将是人们在即将到来的GPT-4中看到的不可避免的进步之一,正如OpenAI公司首席执行官Sam Altman在他的演讲中提到的那样。与此同时,Altman还打破了该模型拥有100万亿个参数的传言。因此,人们都知道,这种人工智能模型越大并不总是代表着越好。
以上是ChatGPT vs. GPT-3 vs. GPT-4只是聊天机器人家族的内部斗争的详细内容。更多信息请关注PHP中文网其他相关文章!

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

Atom编辑器mac版下载
最流行的的开源编辑器

Dreamweaver Mac版
视觉化网页开发工具

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。