golang怎么实现延时任务?下面本篇文章给大家分享一套基于golang实现的延时任务方案,希望对大家有所帮助!
在实际业务场景中,我们有时候会碰到一些延时的需求:例如,在电商平台,运营在管理后台添加商品后,不需要立刻展示在前台,而是在之后某个时间点才展现。
当然,我们有很多种思路,可以应对这个问题。例如,将待发布商品信息添加到db,然后通过定时任务轮询数据表的方式,查询当前时间点的发布商品;又比如,将商品信息全部添加到redis中,通过SortSet属性完成这个功能。最终的选择,取决于我们的业务场景和运行环境。
在这里,我想给大家分享一套,基于golang实现的延时任务方案。
思维导图
为了让大家有一个大致的印象,我将正文的大纲列在下面。
实现思路
我们都知道,任何一种队列,实际上都是存在生产者和消费者两部分的。只不过,延时任务相对于普通队列,多了一个延时的特性罢了。
1、生产者
从生产者的角度上讲,当用户推送一个任务过来的时候,会携带着延迟执行的时间数值。为了让这个任务到预定时刻能执行,我们需要将这个任务放在内存里储存一段时间,并且时间是一维的,在不断增长。那么,我们用什么数据结构存储呢?
(1)选择一:map。由于map具有无序性,无法按照执行时间排序,我们无法保证取出的任务是否是当前时间点需要执行的,所以排除这个选项。
(2)选择二:channel。的确,channel有时候可以看作队列,然而,它的输出和输入严格遵循着“先进先出”的原则,遗憾的是,先进的任务未必就是先执行的,因此,channel也并不合适。
(3)选择三:slice。切片貌似可行,因为切片元素是具有有序性的,所以,如果我们能够按照执行时间的顺序排列好所有的切片元素,那么,每次只要读取切片的头元素(也可能是尾元素),就可以得到我们要的任务。
2、消费者
从消费者的角度来说,它最大的难点在于,如何让每个任务,在特定的时间点被消费。那么,针对每一个任务,我们如何实现,让它等待一段时间后再执行呢?
没错,就是timer。
总结下来,“切片+timer”的组合,应该是可以达到目的的。
步步为营
(1)用户调用InitDelayQueue() ,初始化延时任务对象。
(2)开启协程,监听任务操作管道(add/delete信号),以及执行时间管道(timer.C信号)。
(3)用户发出add/delete信号。
(4)(2)中的协程捕捉到(3)中的信号,对任务列表进行变更。
(5)当任务执行的时间点到达的时候(timer.C管道有元素输出的时候),执行任务。
(1)延时任务对象
// 延时任务对象 type DelayQueue struct { tasks []*task // 存储任务列表的切片 add chan *task // 用户添加任务的管道信号 remove chan string // 用户删除任务的管道信号 waitRemoveTaskMapping map[string]struct{} // 等待删除的任务id列表 }
这里需要注意,有一个waitRemoveTaskMapping字段。由于要删除的任务,可能还在add管道中,没有及时更新到tasks字段中,所以,需要临时记录下客户要删除的任务id。
(2)任务对象
// 任务对象 type task struct { id string // 任务id execTime time.Time // 执行时间 f func() // 执行函数 }
// 初始化延时任务对象 func InitDelayQueue() *DelayQueue { q := &DelayQueue{ add: make(chan *task, 10000), remove: make(chan string, 100), waitRemoveTaskMapping: make(map[string]struct{}), } return q }
在这个过程中,我们需要对用户对任务的操作信号,以及任务的执行时间信号进行监听。
func (q *DelayQueue) start() { for { // to do something... select { case now := <-timer.C: // 任务执行时间信号 // to do something... case t := <-q.add: // 任务推送信号 // to do something... case id := <-q.remove: // 任务删除信号 // to do something... } } }
完善我们的初始化方法:
// 初始化延时任务对象 func InitDelayQueue() *DelayQueue { q := &DelayQueue{ add: make(chan *task, 10000), remove: make(chan string, 100), waitRemoveTaskMapping: make(map[string]struct{}), } // 开启协程,监听任务相关信号 go q.start() return q }
生产者推送任务的时候,只需要将任务加到add管道中即可,在这里,我们生成一个任务id,并返回给用户。
// 用户推送任务 func (q *DelayQueue) Push(timeInterval time.Duration, f func()) string { // 生成一个任务id,方便删除使用 id := genTaskId() t := &task{ id: id, execTime: time.Now().Add(timeInterval), f: f, } // 将任务推到add管道中 q.add <- t return id }
在这里,我们要将用户推送的任务放到延时任务的tasks字段中。由于,我们需要将任务按照执行时间顺序排序,所以,我们需要找到新增任务在切片中的插入位置。又因为,插入之前的任务列表已经是有序的,所以,我们可以采用二分法处理。
// 使用二分法判断新增任务的插入位置 func (q *DelayQueue) getTaskInsertIndex(t *task, leftIndex, rightIndex int) (index int) { if len(q.tasks) == 0 { return } length := rightIndex - leftIndex if q.tasks[leftIndex].execTime.Sub(t.execTime) >= 0 { // 如果当前切片中最小的元素都超过了插入的优先级,则插入位置应该是最左边 return leftIndex } if q.tasks[rightIndex].execTime.Sub(t.execTime) <= 0 { // 如果当前切片中最大的元素都没超过插入的优先级,则插入位置应该是最右边 return rightIndex + 1 } if length == 1 && q.tasks[leftIndex].execTime.Before(t.execTime) && q.tasks[rightIndex].execTime.Sub(t.execTime) >= 0 { // 如果插入的优先级刚好在仅有的两个优先级之间,则中间的位置就是插入位置 return leftIndex + 1 } middleVal := q.tasks[leftIndex+length/2].execTime // 这里用二分法递归的方式,一直寻找正确的插入位置 if t.execTime.Sub(middleVal) <= 0 { return q.getTaskInsertIndex(t, leftIndex, leftIndex+length/2) } else { return q.getTaskInsertIndex(t, leftIndex+length/2, rightIndex) } }
找到正确的插入位置后,我们才能将任务准确插入:
// 将任务添加到任务切片列表中 func (q *DelayQueue) addTask(t *task) { // 寻找新增任务的插入位置 insertIndex := q.getTaskInsertIndex(t, 0, len(q.tasks)-1) // 找到了插入位置,更新任务列表 q.tasks = append(q.tasks, &task{}) copy(q.tasks[insertIndex+1:], q.tasks[insertIndex:]) q.tasks[insertIndex] = t }
那么,在监听add管道的时候,我们直接调用上述addTask() 即可。
func (q *DelayQueue) start() { for { // to do something... select { case now := <-timer.C: // 任务执行时间信号 // to do something... case t := <-q.add: // 任务推送信号 q.addTask(t) case id := <-q.remove: // 任务删除信号 // to do something... } } }
// 用户删除任务 func (q *DelayQueue) Delete(id string) { q.remove <- id }
在这里,我们可以遍历任务列表,根据删除任务的id找到其在切片中的对应index。
// 删除指定任务 func (q *DelayQueue) deleteTask(id string) { deleteIndex := -1 for index, t := range q.tasks { if t.id == id { // 找到了在切片中需要删除的所以呢 deleteIndex = index break } } if deleteIndex == -1 { // 如果没有找到删除的任务,说明任务还在add管道中,来不及更新到tasks中,这里我们就将这个删除id临时记录下来 // 注意,这里暂时不考虑,任务id非法的特殊情况 q.waitRemoveTaskMapping[id] = struct{}{} return } if len(q.tasks) == 1 { // 删除后,任务列表就没有任务了 q.tasks = []*task{} return } if deleteIndex == len(q.tasks)-1 { // 如果删除的是,任务列表的最后一个元素,则执行下列代码 q.tasks = q.tasks[:len(q.tasks)-1] return } // 如果删除的是,任务列表的其他元素,则需要将deleteIndex之后的元素,全部向前挪动一位 copy(q.tasks[deleteIndex:len(q.tasks)-1], q.tasks[deleteIndex+1:len(q.tasks)-1]) q.tasks = q.tasks[:len(q.tasks)-1] return }
然后,我们可以完善start()方法了。
func (q *DelayQueue) start() { for { // to do something... select { case now := <-timer.C: // 任务执行时间信号 // to do something... case t := <-q.add: // 任务推送信号 q.addTask(t) case id := <-q.remove: // 任务删除信号 q.deleteTask(id) } } }
start()执行的时候,分成两种情况:任务列表为空,只需要监听add管道即可;任务列表不为空的时候,需要监听所有管道。任务执行信号,主要是依靠timer来实现,属于第二种情况。
func (q *DelayQueue) start() { for { if len(q.tasks) == 0 { // 任务列表为空的时候,只需要监听add管道 select { case t := <-q.add: //添加任务 q.addTask(t) } continue } // 任务列表不为空的时候,需要监听所有管道 // 任务的等待时间=任务的执行时间-当前的时间 currentTask := q.tasks[0] timer := time.NewTimer(currentTask.execTime.Sub(time.Now())) select { case now := <-timer.C: // 任务执行信号 timer.Stop() if _, isRemove := q.waitRemoveTaskMapping[currentTask.id]; isRemove { // 之前客户已经发出过该任务的删除信号,因此需要结束任务,刷新任务列表 q.endTask() delete(q.waitRemoveTaskMapping, currentTask.id) continue } // 开启协程,异步执行任务 go q.execTask(currentTask, now) // 任务结束,刷新任务列表 q.endTask() case t := <-q.add: // 任务推送信号 timer.Stop() q.addTask(t) case id := <-q.remove: // 任务删除信号 timer.Stop() q.deleteTask(id) } } }
执行任务:
// 执行任务 func (q *DelayQueue) execTask(task *task, currentTime time.Time) { if task.execTime.After(currentTime) { // 如果当前任务的执行时间落后于当前时间,则不执行 return } // 执行任务 task.f() return }
结束任务,刷新任务列表:
// 一个任务去执行了,刷新任务列表 func (q *DelayQueue) endTask() { if len(q.tasks) == 1 { q.tasks = []*task{} return } q.tasks = q.tasks[1:] }
delay_queue.go
package delay_queue import ( "go.mongodb.org/mongo-driver/bson/primitive" "time" ) // 延时任务对象 type DelayQueue struct { tasks []*task // 存储任务列表的切片 add chan *task // 用户添加任务的管道信号 remove chan string // 用户删除任务的管道信号 waitRemoveTaskMapping map[string]struct{} // 等待删除的任务id列表 } // 任务对象 type task struct { id string // 任务id execTime time.Time // 执行时间 f func() // 执行函数 } // 初始化延时任务对象 func InitDelayQueue() *DelayQueue { q := &DelayQueue{ add: make(chan *task, 10000), remove: make(chan string, 100), waitRemoveTaskMapping: make(map[string]struct{}), } // 开启协程,监听任务相关信号 go q.start() return q } // 用户删除任务 func (q *DelayQueue) Delete(id string) { q.remove <- id } // 用户推送任务 func (q *DelayQueue) Push(timeInterval time.Duration, f func()) string { // 生成一个任务id,方便删除使用 id := genTaskId() t := &task{ id: id, execTime: time.Now().Add(timeInterval), f: f, } // 将任务推到add管道中 q.add <- t return id } // 监听各种任务相关信号 func (q *DelayQueue) start() { for { if len(q.tasks) == 0 { // 任务列表为空的时候,只需要监听add管道 select { case t := <-q.add: //添加任务 q.addTask(t) } continue } // 任务列表不为空的时候,需要监听所有管道 // 任务的等待时间=任务的执行时间-当前的时间 currentTask := q.tasks[0] timer := time.NewTimer(currentTask.execTime.Sub(time.Now())) select { case now := <-timer.C: timer.Stop() if _, isRemove := q.waitRemoveTaskMapping[currentTask.id]; isRemove { // 之前客户已经发出过该任务的删除信号,因此需要结束任务,刷新任务列表 q.endTask() delete(q.waitRemoveTaskMapping, currentTask.id) continue } // 开启协程,异步执行任务 go q.execTask(currentTask, now) // 任务结束,刷新任务列表 q.endTask() case t := <-q.add: // 添加任务 timer.Stop() q.addTask(t) case id := <-q.remove: // 删除任务 timer.Stop() q.deleteTask(id) } } } // 执行任务 func (q *DelayQueue) execTask(task *task, currentTime time.Time) { if task.execTime.After(currentTime) { // 如果当前任务的执行时间落后于当前时间,则不执行 return } // 执行任务 task.f() return } // 一个任务去执行了,刷新任务列表 func (q *DelayQueue) endTask() { if len(q.tasks) == 1 { q.tasks = []*task{} return } q.tasks = q.tasks[1:] } // 将任务添加到任务切片列表中 func (q *DelayQueue) addTask(t *task) { // 寻找新增任务的插入位置 insertIndex := q.getTaskInsertIndex(t, 0, len(q.tasks)-1) // 找到了插入位置,更新任务列表 q.tasks = append(q.tasks, &task{}) copy(q.tasks[insertIndex+1:], q.tasks[insertIndex:]) q.tasks[insertIndex] = t } // 删除指定任务 func (q *DelayQueue) deleteTask(id string) { deleteIndex := -1 for index, t := range q.tasks { if t.id == id { // 找到了在切片中需要删除的所以呢 deleteIndex = index break } } if deleteIndex == -1 { // 如果没有找到删除的任务,说明任务还在add管道中,来不及更新到tasks中,这里我们就将这个删除id临时记录下来 // 注意,这里暂时不考虑,任务id非法的特殊情况 q.waitRemoveTaskMapping[id] = struct{}{} return } if len(q.tasks) == 1 { // 删除后,任务列表就没有任务了 q.tasks = []*task{} return } if deleteIndex == len(q.tasks)-1 { // 如果删除的是,任务列表的最后一个元素,则执行下列代码 q.tasks = q.tasks[:len(q.tasks)-1] return } // 如果删除的是,任务列表的其他元素,则需要将deleteIndex之后的元素,全部向前挪动一位 copy(q.tasks[deleteIndex:len(q.tasks)-1], q.tasks[deleteIndex+1:len(q.tasks)-1]) q.tasks = q.tasks[:len(q.tasks)-1] return } // 寻找任务的插入位置 func (q *DelayQueue) getTaskInsertIndex(t *task, leftIndex, rightIndex int) (index int) { // 使用二分法判断新增任务的插入位置 if len(q.tasks) == 0 { return } length := rightIndex - leftIndex if q.tasks[leftIndex].execTime.Sub(t.execTime) >= 0 { // 如果当前切片中最小的元素都超过了插入的优先级,则插入位置应该是最左边 return leftIndex } if q.tasks[rightIndex].execTime.Sub(t.execTime) <= 0 { // 如果当前切片中最大的元素都没超过插入的优先级,则插入位置应该是最右边 return rightIndex + 1 } if length == 1 && q.tasks[leftIndex].execTime.Before(t.execTime) && q.tasks[rightIndex].execTime.Sub(t.execTime) >= 0 { // 如果插入的优先级刚好在仅有的两个优先级之间,则中间的位置就是插入位置 return leftIndex + 1 } middleVal := q.tasks[leftIndex+length/2].execTime // 这里用二分法递归的方式,一直寻找正确的插入位置 if t.execTime.Sub(middleVal) <= 0 { return q.getTaskInsertIndex(t, leftIndex, leftIndex+length/2) } else { return q.getTaskInsertIndex(t, leftIndex+length/2, rightIndex) } } func genTaskId() string { return primitive.NewObjectID().Hex() }
测试代码:delay_queue_test.go
package delay_queue import ( "fmt" "testing" "time" ) func TestDelayQueue(t *testing.T) { q := InitDelayQueue() for i := 0; i < 100; i++ { go func(i int) { id := q.Push(time.Duration(i)*time.Second, func() { fmt.Printf("%d秒后执行...\n", i) return }) if i%7 == 0 { q.Delete(id) } }(i) } time.Sleep(time.Hour) }
头脑风暴
上面的方案,的确实现了延时任务的效果,但是其中仍然有一些问题,仍然值得我们思考和优化。
1、按照上面的方案,如果大量延时任务的执行时间,集中在同一个时间点,会造成短时间内timer频繁地创建和销毁。
2、上述方案相比于time.AfterFunc()方法,我们需要在哪些场景下作出取舍。
3、如果服务崩溃或重启,如何去持久化队列中的任务。
本文和大家讨论了延时任务在golang中的一种实现方案,在这个过程中,一次性定时器timer、切片、管道等golang特色,以及二分插入等常见算法都体现得淋漓尽致。
以上是浅析golang怎么实现延时任务的详细内容。更多信息请关注PHP中文网其他相关文章!