搜索
首页web前端js教程怎么利用Node进行图片压缩

怎么利用Node进行图片压缩

Mar 20, 2023 pm 06:22 PM
node.js图片压缩

怎么利用Node进行图片压缩?下面本篇文章以PNG图片为例给大家介绍一下进行图片压缩的方法,希望对大家有所帮助!

怎么利用Node进行图片压缩

最近要搞图像处理服务,其中一个是要实现图片压缩功能。以前前端开发的时候只要利用canvas现成的API处理下就能实现,后端可能也有现成的API但我并不知道。仔细想想,我从来没有详细了解过图片压缩原理,那刚好趁这次去调研学习下,所以有了这篇文章来记录。老样子,如有不对的地方,DDDD(带带弟弟)。

我们先把图片上传到后端,看看后端接收了什么样的参数。这里后端我用的是Node.js(Nest),图片我以PNG图片为例。

接口和参数打印如下:

@Post(&#39;/compression&#39;)<br/>@UseInterceptors(FileInterceptor(&#39;file&#39;))<br/>async imageCompression(@UploadedFile() file: Express.Multer.File) {<br/>  <br/>  return {<br/>    file<br/>  }<br/>}<br/>

要进行压缩,我们就需要拿到图像数据。可以看到,唯一能藏匿图像数据的就是这串buffer。那这串buffer描述了什么,就需要先弄清什么是PNG。【相关教程推荐:nodejs视频教程编程教学

PNG

这里是PNG的WIKI地址。

阅读之后,我了解到PNG是由一个8 byte的文件头加上多个的块(chunk)组成。示意图如下:

其中:

文件头是由一个被称为magic number的组成。值为 89 50 4e 47 0d 0a 1a 0a(16进制)。它标记了这串数据是PNG格式。

块分为两种,一种叫关键块(Critical chunks),一种叫辅助块(Ancillary chunks)。关键块是必不可少的,没有关键块,解码器将不能正确识别并展示图片。辅助块是可选的,部分软件在处理图片之后就有可能携带辅助块。每个块都是四部分组成:4 byte 描述这个块的内容有多长,4 byte 描述这个块的类型是什么,n byte 描述块的内容(n 就是前面4 byte 值的大小,也就是说,一个块最大长度为28*4),4 byte CRC校验检查块的数据,标记着一个块的结束。其中,块类型的4 byte 的值为4个acsii码,第一个字母大写表示是关键块小写表示是辅助块;第二个字母大写表示是公有小写表示是私有;第三个字母必须是大写,用于PNG后续的扩展;第四个字母表示该块不识别时,能否安全复制,大写表示未修改关键块时才能安全复制,小写表示都能安全复制。PNG官方提供很多定义的块类型,这里只需要知道关键块的类型即可,分别是IHDR,PLTE,IDAT,IEND。

IHDR

PNG要求第一个块必须是IHDR。IHDR的块内容是固定的13 byte,包含了图片的以下信息:

宽度 width (4 byte) & 高度 height (4 byte)

位深 bit depth (1 byte,值为1,2,4,8或者16) & 颜色类型 color type (1 byte,值为0,2,3,4或者6)

压缩方法 compression method (1 byte,值为0) & 过滤方式 filter method (1 byte,值为0)

交错方式 interlace method (1 byte,值为0或者1)

宽度和高度很容易理解,剩下的几个好像都很陌生,接下来我将进行说明。

在说明位深之前,我们先来看颜色类型,颜色类型有5种值:

  • 0 表示灰度(grayscale)它只有一个通道(channel),看成rgb的话,可以理解它的三色通道值是相等的,所以不需要多余两个通道表示。

  • 2 表示真实色彩(rgb)它有三个通道,分别是R(红色),G(绿色),B(蓝色)。

  • 3 表示颜色索引(indexed)它也只有一个通道,表示颜色的索引值。该类型往往配备一组颜色列表,具体的颜色是根据索引值和颜色列表查询得到的。

  • 4 表示灰度和alpha 它有两个通道,除了灰度的通道外,多了一个alpha通道,可以控制透明度。

  • 6 表示真实色彩和alpha 它有四个通道。

之所以要说到通道,是因为它和这里的位深有关。位深的值就定义了每个通道所占的位数(bit)。位深跟颜色类型组合,就能知道图片的颜色格式类型和每个像素所占的内存大小。PNG官方支持的组合如下表:

2023-03-17_180115.png

过滤和压缩是因为PNG中存储的不是图像的原始数据,而是处理后的数据,这也是为什么PNG图片所占内存较小的原因。PNG使用了两步进行了图片数据的压缩转换。

第一步,过滤。过滤的目的是为了让原始图片数据经过该规则后,能进行更大的压缩比。举个例子,如果有一张渐变图片,从左往右,颜色依次为[#000000, #000001, #000002, ..., #ffffff],那么我们就可以约定一条规则,右边的像素总是和它前一个左边的像素进行比较,那么处理完的数据就变成了[1, 1, 1, ..., 1],这样是不是就能进行更好的压缩。PNG目前只有一种过滤方式,就是基于相邻像素作为预测值,用当前像素减去预测值。过滤的类型一共有五种,(目前我还不知道这个类型值在哪里存储,有可能在IDAT里,找到了再来删除这条括号里的已确定该类型值储存在IDAT数据中)如下表所示:

Type byte Filter name Predicted value
0 None 不做任何处理
1 Sub 左侧相邻像素
2 Up 上方相邻像素
3 Average Math.floor((左侧相邻像素 + 上方相邻像素) / 2)
4 Paeth 取(左侧相邻像素 + 上方相邻像素 - 左上方像素)最接近的值

第二步,压缩。PNG也只有一种压缩算法,使用的是DEFLATE算法。这里不细说,具体看下面的章节。

交错方式,有两种值。0表示不处理,1表示使用Adam7 算法进行处理。我没有去详细了解该算法,简单来说,当值为0时,图片需要所有数据都加载完毕时,图片才会显示。而值为1时,Adam7会把图片划分多个区域,每个区域逐级加载,显示效果会有所优化,但通常会降低压缩效率。加载过程可以看下面这张gif图。

PLTE

PLTE的块内容为一组颜色列表,当颜色类型为颜色索引时需要配置。值得注意的是,颜色列表中的颜色一定是每个通道8bit,每个像素24bit的真实色彩列表。列表的长度,可以比位深约定的少,但不能多。比如位深是2,那么22,最多4种颜色,列表长度可以为3,但不能为5。

IDAT

IDAT的块内容是图片原始数据经过PNG压缩转换后的数据,它可能有多个重复的块,但必须是连续的,并且只有当上一个块填充满时,才会有下一个块。

IEND

IEND的块内容为0 byte,它表示图片的结束。

阅读到这里,我们把上面的接口改造一下,解析这串buffer。

@Post(&#39;/compression&#39;)<br/>@UseInterceptors(FileInterceptor(&#39;file&#39;))<br/>async imageCompression(@UploadedFile() file: Express.Multer.File) {<br/>  const buffer = file.buffer;<br/><br/>  const result = {<br/>    header: buffer.subarray(0, 8).toString(&#39;hex&#39;),<br/>    chunks: [],<br/>    size: file.size,<br/>  };<br/><br/>  let pointer = 8;<br/>  while (pointer < buffer.length) {<br/>    let chunk = {};<br/>    const length = parseInt(buffer.subarray(pointer, pointer + 4).toString(&#39;hex&#39;), 16);<br/>    const chunkType = buffer.subarray(pointer + 4, pointer + 8).toString(&#39;ascii&#39;);<br/>    const crc = buffer.subarray(pointer + length, pointer + length + 4).toString(&#39;hex&#39;);<br/>    chunk = {<br/>      ...chunk,<br/>      length,<br/>      chunkType,<br/>      crc,<br/>    };<br/><br/>    switch (chunkType) {<br/>      case &#39;IHDR&#39;:<br/>        const width = parseInt(buffer.subarray(pointer + 8, pointer + 12).toString(&#39;hex&#39;), 16);<br/>        const height = parseInt(buffer.subarray(pointer + 12, pointer + 16).toString(&#39;hex&#39;), 16);<br/>        const bitDepth = parseInt(<br/>          buffer.subarray(pointer + 16, pointer + 17).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/>        const colorType = parseInt(<br/>          buffer.subarray(pointer + 17, pointer + 18).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/>        const compressionMethod = parseInt(<br/>          buffer.subarray(pointer + 18, pointer + 19).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/>        const filterMethod = parseInt(<br/>          buffer.subarray(pointer + 19, pointer + 20).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/>        const interlaceMethod = parseInt(<br/>          buffer.subarray(pointer + 20, pointer + 21).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/><br/>        chunk = {<br/>          ...chunk,<br/>          width,<br/>          height,<br/>          bitDepth,<br/>          colorType,<br/>          compressionMethod,<br/>          filterMethod,<br/>          interlaceMethod,<br/>        };<br/>        break;<br/>      case &#39;PLTE&#39;:<br/>        const colorList = [];<br/>        const colorListStr = buffer.subarray(pointer + 8, pointer + 8 + length).toString(&#39;hex&#39;);<br/>        for (let i = 0; i < colorListStr.length; i += 6) {<br/>          colorList.push(colorListStr.slice(i, i + 6));<br/>        }<br/>        chunk = {<br/>          ...chunk,<br/>          colorList,<br/>        };<br/>        break;<br/>      default:<br/>        break;<br/>    }<br/>    result.chunks.push(chunk);<br/>    pointer = pointer + 4 + 4 + length + 4;<br/>  }<br/><br/>  return result;<br/>}<br/>

这里我测试用的图没有PLTE,刚好我去TinyPNG压缩我那张测试图之后进行上传,发现有PLTE块,可以看一下,结果如下图。

通过比对这两张图,压缩图片的方式我们也能窥探一二。

PNG的压缩

前面说过,PNG使用的是一种叫DEFLATE的无损压缩算法,它是Huffman Coding跟LZ77的结合。除了PNG,我们经常使用的压缩文件,.zip,.gzip也是使用的这种算法(7zip算法有更高的压缩比,也可以了解下)。要了解DEFLATE,我们首先要了解Huffman Coding和LZ77。

Huffman Coding

哈夫曼编码忘记在大学的哪门课接触过了,它是一种根据字符出现频率,用最少的字符替换出现频率最高的字符,最终降低平均字符长度的算法。

举个例子,有字符串"ABCBCABABADA",如果按照正常空间存储,所占内存大小为12 * 8bit = 96bit,现对它进行哈夫曼编码。

1.统计每个字符出现的频率,得到A 5次 B 4次 C 2次 D 1次

2.对字符按照频率从小到大排序,将得到一个队列D1,C2,B4,A5

3.按顺序构造哈夫曼树,先构造一个空节点,最小频率的字符分给该节点的左侧,倒数第二频率的字符分给右侧,然后将频率相加的值赋值给该节点。接着用赋值后节点的值和倒数第三频率的字符进行比较,较小的值总是分配在左侧,较大的值总是分配在右侧,依次类推,直到队列结束,最后把最大频率和前面的所有值相加赋值给根节点,得到一棵完整的哈夫曼树。

4.对每条路径进行赋值,左侧路径赋值为0,右侧路径赋值为1。从根节点到叶子节点,进行遍历,遍历的结果就是该字符编码后的二进制表示,得到:A(0)B(11)C(101)D(100)。

完整的哈夫曼树如下(忽略箭头,没找到连线- -!):

压缩后的字符串,所占内存大小为5 * 1bit + 4 * 2bit + 2 * 3bit + 1 * 3bit = 22bit。当然在实际传输过程中,还需要把编码表的信息(原始字符和出现频率)带上。因此最终占比大小为 4 * 8bit + 4 * 3bit(频率最大值为5,3bit可以表示)+ 22bit = 66bit(理想状态),小于原有的96bit。

LZ77

LZ77算法还是第一次知道,查了一下是一种基于字典和滑动窗的无所压缩算法。(题外话:因为Lempel和Ziv在1977年提出的算法,所以叫LZ77,哈哈哈?)

我们还是以上面这个字符串"ABCBCABABADA"为例,现假设有一个4 byte的动态窗口和一个2byte的预读缓冲区,然后对它进行LZ77算法压缩,过程顺序从上往下,示意图如下:

总结下来,就是预读缓冲区在动态窗口中找到最长相同项,然后用长度较短的标记来替代这个相同项,从而实现压缩。从上图也可以看出,压缩比跟动态窗口的大小,预读缓冲区的大小和被压缩数据的重复度有关。

DEFLATE

DEFLATE【RFC 1951】是先使用LZ77编码,对编码后的结果在进行哈夫曼编码。我们这里不去讨论具体的实现方法,直接使用其推荐库Zlib,刚好Node.js内置了对Zlib的支持。接下来我们继续改造上面那个接口,如下:

import * as zlib from &#39;zlib&#39;;<br/><br/>@Post(&#39;/compression&#39;)<br/>@UseInterceptors(FileInterceptor(&#39;file&#39;))<br/>async imageCompression(@UploadedFile() file: Express.Multer.File) {<br/>  const buffer = file.buffer;<br/><br/>  const result = {<br/>    header: buffer.subarray(0, 8).toString(&#39;hex&#39;),<br/>    chunks: [],<br/>    size: file.size,<br/>  };<br/><br/>  // 因为可能有多个IDAT的块 需要个数组缓存最后拼接起来<br/>  const fileChunkDatas = [];<br/>  let pointer = 8;<br/>  while (pointer < buffer.length) {<br/>    let chunk = {};<br/>    const length = parseInt(buffer.subarray(pointer, pointer + 4).toString(&#39;hex&#39;), 16);<br/>    const chunkType = buffer.subarray(pointer + 4, pointer + 8).toString(&#39;ascii&#39;);<br/>    const crc = buffer.subarray(pointer + length, pointer + length + 4).toString(&#39;hex&#39;);<br/>    chunk = {<br/>      ...chunk,<br/>      length,<br/>      chunkType,<br/>      crc,<br/>    };<br/><br/>    switch (chunkType) {<br/>      case &#39;IHDR&#39;:<br/>        const width = parseInt(buffer.subarray(pointer + 8, pointer + 12).toString(&#39;hex&#39;), 16);<br/>        const height = parseInt(buffer.subarray(pointer + 12, pointer + 16).toString(&#39;hex&#39;), 16);<br/>        const bitDepth = parseInt(<br/>          buffer.subarray(pointer + 16, pointer + 17).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/>        const colorType = parseInt(<br/>          buffer.subarray(pointer + 17, pointer + 18).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/>        const compressionMethod = parseInt(<br/>          buffer.subarray(pointer + 18, pointer + 19).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/>        const filterMethod = parseInt(<br/>          buffer.subarray(pointer + 19, pointer + 20).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/>        const interlaceMethod = parseInt(<br/>          buffer.subarray(pointer + 20, pointer + 21).toString(&#39;hex&#39;),<br/>          16,<br/>        );<br/><br/>        chunk = {<br/>          ...chunk,<br/>          width,<br/>          height,<br/>          bitDepth,<br/>          colorType,<br/>          compressionMethod,<br/>          filterMethod,<br/>          interlaceMethod,<br/>        };<br/>        break;<br/>      case &#39;PLTE&#39;:<br/>        const colorList = [];<br/>        const colorListStr = buffer.subarray(pointer + 8, pointer + 8 + length).toString(&#39;hex&#39;);<br/>        for (let i = 0; i < colorListStr.length; i += 6) {<br/>          colorList.push(colorListStr.slice(i, i + 6));<br/>        }<br/>        chunk = {<br/>          ...chunk,<br/>          colorList,<br/>        };<br/>        break;<br/>      case &#39;IDAT&#39;:<br/>        fileChunkDatas.push(buffer.subarray(pointer + 8, pointer + 8 + length));<br/>        break;<br/>      default:<br/>        break;<br/>    }<br/>    result.chunks.push(chunk);<br/>    pointer = pointer + 4 + 4 + length + 4;<br/>  }<br/><br/>  const originFileData = zlib.unzipSync(Buffer.concat(fileChunkDatas));<br/><br/>  // 这里原图片数据太长了 我就只打印了长度<br/>  return {<br/>    ...result,<br/>    originFileData: originFileData.length,<br/>  };<br/>}<br/>

最终打印的结果,我们需要注意红框的那几个部分。可以看到上图,位深和颜色类型决定了每个像素由4 byte组成,然后由于过滤方式的存在,会在每行的第一个字节进行标记。因此该图的原始数据所占大小为:707 * 475 * 4 byte + 475 * 1 byte = 1343775 byte。正好是我们打印的结果。

我们也可以试试之前TinyPNG压缩后的图,如下:

可以看到位深为8,索引颜色类型的图每像素占1 byte。计算得到:707 * 475 * 1 byte + 475 * 1 byte = 336300 byte。结果也正确。

总结

现在再看如何进行图片压缩,你可能很容易得到下面几个结论:

1.减少不必要的辅助块信息,因为辅助块对PNG图片而言并不是必须的。

2.减少IDAT的块数,因为每多一个IDAT的块,就多余了12 byte。

3.降低每个像素所占的内存大小,比如当前是4通道8位深的图片,可以统计整个图片色域,得到色阶表,设置索引颜色类型,降低通道从而降低每个像素的内存大小。

4.等等....

至于JPEG,WEBP等等格式图片,有机会再看。溜了溜了~(还是使用现成的库处理压缩吧)。

好久没写文章,写完才发现语雀不能免费共享,发在这里吧。

更多node相关知识,请访问:nodejs 教程

以上是怎么利用Node进行图片压缩的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:掘金社区。如有侵权,请联系admin@php.cn删除
JavaScript是用C编写的吗?检查证据JavaScript是用C编写的吗?检查证据Apr 25, 2025 am 12:15 AM

是的,JavaScript的引擎核心是用C语言编写的。1)C语言提供了高效性能和底层控制,适合JavaScript引擎的开发。2)以V8引擎为例,其核心用C 编写,结合了C的效率和面向对象特性。3)JavaScript引擎的工作原理包括解析、编译和执行,C语言在这些过程中发挥关键作用。

JavaScript的角色:使网络交互和动态JavaScript的角色:使网络交互和动态Apr 24, 2025 am 12:12 AM

JavaScript是现代网站的核心,因为它增强了网页的交互性和动态性。1)它允许在不刷新页面的情况下改变内容,2)通过DOMAPI操作网页,3)支持复杂的交互效果如动画和拖放,4)优化性能和最佳实践提高用户体验。

C和JavaScript:连接解释C和JavaScript:连接解释Apr 23, 2025 am 12:07 AM

C 和JavaScript通过WebAssembly实现互操作性。1)C 代码编译成WebAssembly模块,引入到JavaScript环境中,增强计算能力。2)在游戏开发中,C 处理物理引擎和图形渲染,JavaScript负责游戏逻辑和用户界面。

从网站到应用程序:JavaScript的不同应用从网站到应用程序:JavaScript的不同应用Apr 22, 2025 am 12:02 AM

JavaScript在网站、移动应用、桌面应用和服务器端编程中均有广泛应用。1)在网站开发中,JavaScript与HTML、CSS一起操作DOM,实现动态效果,并支持如jQuery、React等框架。2)通过ReactNative和Ionic,JavaScript用于开发跨平台移动应用。3)Electron框架使JavaScript能构建桌面应用。4)Node.js让JavaScript在服务器端运行,支持高并发请求。

Python vs. JavaScript:比较用例和应用程序Python vs. JavaScript:比较用例和应用程序Apr 21, 2025 am 12:01 AM

Python更适合数据科学和自动化,JavaScript更适合前端和全栈开发。1.Python在数据科学和机器学习中表现出色,使用NumPy、Pandas等库进行数据处理和建模。2.Python在自动化和脚本编写方面简洁高效。3.JavaScript在前端开发中不可或缺,用于构建动态网页和单页面应用。4.JavaScript通过Node.js在后端开发中发挥作用,支持全栈开发。

C/C在JavaScript口译员和编译器中的作用C/C在JavaScript口译员和编译器中的作用Apr 20, 2025 am 12:01 AM

C和C 在JavaScript引擎中扮演了至关重要的角色,主要用于实现解释器和JIT编译器。 1)C 用于解析JavaScript源码并生成抽象语法树。 2)C 负责生成和执行字节码。 3)C 实现JIT编译器,在运行时优化和编译热点代码,显着提高JavaScript的执行效率。

JavaScript在行动中:现实世界中的示例和项目JavaScript在行动中:现实世界中的示例和项目Apr 19, 2025 am 12:13 AM

JavaScript在现实世界中的应用包括前端和后端开发。1)通过构建TODO列表应用展示前端应用,涉及DOM操作和事件处理。2)通过Node.js和Express构建RESTfulAPI展示后端应用。

JavaScript和Web:核心功能和用例JavaScript和Web:核心功能和用例Apr 18, 2025 am 12:19 AM

JavaScript在Web开发中的主要用途包括客户端交互、表单验证和异步通信。1)通过DOM操作实现动态内容更新和用户交互;2)在用户提交数据前进行客户端验证,提高用户体验;3)通过AJAX技术实现与服务器的无刷新通信。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具