虚拟dom
和diff
算法是vue
学习过程中的一个难点,也是面试中必须掌握的一个知识点。这两者相辅相成,是vue
框架的核心。今天我们再来总结下vue2
中的虚拟dom
和 diff
算法。(学习视频分享:vue视频教程)
什么是 VNode
我们知道,render function
会被转化成 VNode
。VNode
其实就是一棵以 JavaScript
对象作为基础的树,用对象属性来描述节点,实际上它只是一层对真实 DOM
的抽象。最终可以通过一系列操作使这棵树映射到真实环境上。
比如有如下template
<template> <span class="demo" v-show="isShow"> This is a span. </span> </template>
它换成 VNode
以后大概就是下面这个样子
{ tag: "span", data: { /* 指令集合数组 */ directives: [ { /* v-show指令 */ rawName: "v-show", expression: "isShow", name: "show", value: true, }, ], /* 静态class */ staticClass: "demo", }, text: undefined, children: [ /* 子节点是一个文本VNode节点 */ { tag: undefined, data: undefined, text: "This is a span.", children: undefined, }, ], };
总的来说,VNode
就是一个 JavaScript
对象。这个JavaScript
对象能完整地表示出真实DOM
。
为什么vue要使用 VNode
笔者认为有两点原因
由于
Virtual DOM
是以JavaScript
对象为基础而不依赖真实平台环境,所以使它具有了跨平台的能力,比如说浏览器平台、Weex、Node 等。减少操作
DOM
,任何页面的变化,都只使用VNode
进行操作对比,只需要在最后一次进行挂载更新DOM
,避免了频繁操作DOM
,减少了浏览器的回流和重绘从而提高页面性能。
diff算法
下面我们来看看组件更新所涉及到的diff算法
。
前面我们讲依赖收集的时候有说到,渲染watcher
传递给Watcher
的get
方法其实是updateComponent
方法。
updateComponent = () => { vm._update(vm._render(), hydrating) } new Watcher(vm, updateComponent, noop, { before () { if (vm._isMounted) { callHook(vm, 'beforeUpdate') } } }, true /* isRenderWatcher */)
所以组件在响应式数据发生变化的时候会再次触发该方法,接下来我们来详细分析一下updateComponent
里面的_update
方法。
_update
在_update
方法中做了初始渲染和更新的区分,虽然都是调用__patch__
方法,但是传递的参数不一样。
// src/core/instance/lifecycle.js Vue.prototype._update = function (vnode: VNode, hydrating?: boolean) { const vm: Component = this const prevEl = vm.$el const prevVnode = vm._vnode vm._vnode = vnode // 初次渲染没有 prevVnode,组件更新才会有 if (!prevVnode) { // 初次渲染 vm.$el = vm.__patch__(vm.$el, vnode, hydrating, false /* removeOnly */) } else { // 更新 vm.$el = vm.__patch__(prevVnode, vnode) } // ... }
下面我们再来看看__patch__
方法
__patch__
patch
方法接收四个参数,由于初始渲染的时候oldVnode
为vm.$el
是null
,所以初始渲染是没有oldVnode
。
// src/core/vdom/patch.js return function patch (oldVnode, vnode, hydrating, removeOnly) { // 新节点不存在,只有oldVnode就直接销毁,然后返回 if (isUndef(vnode)) { if (isDef(oldVnode)) invokeDestroyHook(oldVnode) return } let isInitialPatch = false const insertedVnodeQueue = [] // 没有老节点,直接创建,也就是初始渲染 if (isUndef(oldVnode)) { isInitialPatch = true createElm(vnode, insertedVnodeQueue) } else { const isRealElement = isDef(oldVnode.nodeType) // 不是真实dom,并且是相同节点走patch if (!isRealElement && sameVnode(oldVnode, vnode)) { // 这里才会涉及到diff算法 patchVnode(oldVnode, vnode, insertedVnodeQueue, null, null, removeOnly) } else { if (isRealElement) { // ... } // replacing existing element const oldElm = oldVnode.elm const parentElm = nodeOps.parentNode(oldElm) // 1.创建一个新节点 createElm( vnode, insertedVnodeQueue, // extremely rare edge case: do not insert if old element is in a // leaving transition. Only happens when combining transition + // keep-alive + HOCs. (#4590) oldElm._leaveCb ? null : parentElm, nodeOps.nextSibling(oldElm) ) // 2.更新父节点占位符 if (isDef(vnode.parent)) { let ancestor = vnode.parent const patchable = isPatchable(vnode) while (ancestor) { for (let i = 0; i < cbs.destroy.length; ++i) { cbs.destroy[i](ancestor) } ancestor.elm = vnode.elm if (patchable) { for (let i = 0; i < cbs.create.length; ++i) { cbs.create[i](emptyNode, ancestor) } const insert = ancestor.data.hook.insert if (insert.merged) { // start at index 1 to avoid re-invoking component mounted hook for (let i = 1; i < insert.fns.length; i++) { insert.fns[i]() } } } else { registerRef(ancestor) } ancestor = ancestor.parent } } // 3.删除老节点 if (isDef(parentElm)) { removeVnodes([oldVnode], 0, 0) } else if (isDef(oldVnode.tag)) { invokeDestroyHook(oldVnode) } } } //触发插入钩子 invokeInsertHook(vnode, insertedVnodeQueue, isInitialPatch) return vnode.elm }
patch
方法大概流程如下:
没有新节点只有老节点直接删除老节点。
只有新节点没有老节点直接添加新节点。
既有新节点又有老节点则判断是不是相同节点,相同则进入
pathVnode
。patchVnode
我们后面会重点分析。既有新节点又有老节点则判断是不是相同节点,不相同则直接删除老节点添加新节点。
我们再来看看它是怎么判断是同一个节点的。
// src/core/vdom/patch.js function sameVnode (a, b) { return ( a.key === b.key && a.asyncFactory === b.asyncFactory && ( ( a.tag === b.tag && a.isComment === b.isComment && isDef(a.data) === isDef(b.data) && sameInputType(a, b) ) || ( isTrue(a.isAsyncPlaceholder) && isUndef(b.asyncFactory.error) ) ) ) } function sameInputType (a, b) { if (a.tag !== 'input') return true let i const typeA = isDef(i = a.data) && isDef(i = i.attrs) && i.type const typeB = isDef(i = b.data) && isDef(i = i.attrs) && i.type return typeA === typeB || isTextInputType(typeA) && isTextInputType(typeB) }
判断两个VNode
节点是否是同一个节点,需要同时满足以下条件
key
相同都有异步组件工厂函数
tag
(当前节点的标签名)相同isComment
是否同为注释节点是否
data
(当前节点对应的对象,包含了具体的一些数据信息,是一个VNodeData类型)当标签是
<input>
的时候,type
必须相同
当两个VNode
的tag、key、isComment
都相同,并且同时定义或未定义data
的时候,且如果标签为input则type
必须相同。这时候这两个VNode
则算sameVnode
,可以直接进行patchVnode
操作。
patchVnode
下面我们再来详细分析下patchVnode
方法。
// src/core/vdom/patch.js function patchVnode ( oldVnode, vnode, insertedVnodeQueue, ownerArray, index, removeOnly ) { // 两个vnode相同则直接返回 if (oldVnode === vnode) { return } if (isDef(vnode.elm) && isDef(ownerArray)) { // clone reused vnode vnode = ownerArray[index] = cloneVNode(vnode) } const elm = vnode.elm = oldVnode.elm if (isTrue(oldVnode.isAsyncPlaceholder)) { if (isDef(vnode.asyncFactory.resolved)) { hydrate(oldVnode.elm, vnode, insertedVnodeQueue) } else { vnode.isAsyncPlaceholder = true } return } /* 如果新旧VNode都是静态的,同时它们的key相同(代表同一节点), 并且新的VNode是clone或者是标记了once(标记v-once属性,只渲染一次), 那么只需要替换componentInstance即可。 */ if (isTrue(vnode.isStatic) && isTrue(oldVnode.isStatic) && vnode.key === oldVnode.key && (isTrue(vnode.isCloned) || isTrue(vnode.isOnce)) ) { vnode.componentInstance = oldVnode.componentInstance return } let i const data = vnode.data /*调用prepatch钩子*/ if (isDef(data) && isDef(i = data.hook) && isDef(i = i.prepatch)) { i(oldVnode, vnode) } // 获取新老虚拟节点的子节点 const oldCh = oldVnode.children const ch = vnode.children if (isDef(data) && isPatchable(vnode)) { for (i = 0; i < cbs.update.length; ++i) cbs.update[i](oldVnode, vnode) if (isDef(i = data.hook) && isDef(i = i.update)) i(oldVnode, vnode) } // 新节点不是文本节点 if (isUndef(vnode.text)) { /*新老节点均有children子节点,则对子节点进行diff操作,调用updateChildren*/ if (isDef(oldCh) && isDef(ch)) { if (oldCh !== ch) updateChildren(elm, oldCh, ch, insertedVnodeQueue, removeOnly) /*如果只有新节点有子节点,先清空elm文本内容,然后为当前DOM节点加入子节点。*/ } else if (isDef(ch)) { if (process.env.NODE_ENV !== 'production') { checkDuplicateKeys(ch) } if (isDef(oldVnode.text)) nodeOps.setTextContent(elm, '') addVnodes(elm, null, ch, 0, ch.length - 1, insertedVnodeQueue) /*如果只有老节点有子节点,则移除elm所有子节点*/ } else if (isDef(oldCh)) { removeVnodes(oldCh, 0, oldCh.length - 1) /*当新老节点都无子节点的时候,因为这个逻辑中新节点text不存在,所以直接去除ele的文本*/ } else if (isDef(oldVnode.text)) { nodeOps.setTextContent(elm, '') } // 新节点是文本节点,如果文本不一样就设置新的文本 } else if (oldVnode.text !== vnode.text) { nodeOps.setTextContent(elm, vnode.text) } /*调用postpatch钩子*/ if (isDef(data)) { if (isDef(i = data.hook) && isDef(i = i.postpatch)) i(oldVnode, vnode) } }
patchVnode
方法大概流程如下:
1.新老节点相同就直接返回。
2.如果新旧VNode都是静态的,同时它们的key相同(代表同一节点),并且新的VNode是clone或者是标记了once(标记v-once属性,只渲染一次),那么只需要替换componentInstance即可。
3.新节点不是文本节点,新老节点均有children
子节点,则对子节点进行diff
操作,调用updateChildren
,这个updateChildren
是diff算法
的核心,后面我们会重点说。
4.新节点不是文本节点,如果老节点没有子节点而新节点存在子节点,先清空老节点DOM的文本内容,然后为当前DOM节点加入子节点。
5.新节点不是文本节点,当新节点没有子节点而老节点有子节点的时候,则移除该DOM节点的所有子节点。
6.新节点不是文本节点,并且新老节点都无子节点的时候,只需要将老节点文本清空。
7.新节点是文本节点,并且新老节点文本不一样,则进行文本的替换。
updateChildren(diff算法核心)
updateChildren
是diff
算法的核心,下面我们来重点分析。
这两张图代表旧的VNode与新VNode进行patch的过程,他们只是在同层级的VNode之间进行比较得到变化(相同颜色的方块代表互相进行比较的VNode节点),然后修改变化的视图,所以十分高效。所以Diff算法是:深度优先算法
。 时间复杂度:O(n)
function updateChildren (parentElm, oldCh, newCh, insertedVnodeQueue, removeOnly) { let oldStartIdx = 0 let newStartIdx = 0 let oldEndIdx = oldCh.length - 1 let oldStartVnode = oldCh[0] let oldEndVnode = oldCh[oldEndIdx] let newEndIdx = newCh.length - 1 let newStartVnode = newCh[0] let newEndVnode = newCh[newEndIdx] let oldKeyToIdx, idxInOld, vnodeToMove, refElm const canMove = !removeOnly if (process.env.NODE_ENV !== 'production') { checkDuplicateKeys(newCh) } while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) { if (isUndef(oldStartVnode)) { oldStartVnode = oldCh[++oldStartIdx] // Vnode has been moved left } else if (isUndef(oldEndVnode)) { oldEndVnode = oldCh[--oldEndIdx] // 老 VNode 节点的头部与新 VNode 节点的头部是相同的 VNode 节点,直接进行 patchVnode,同时 oldStartIdx 与 newStartIdx 向后移动一位。 } else if (sameVnode(oldStartVnode, newStartVnode)) { patchVnode(oldStartVnode, newStartVnode, insertedVnodeQueue, newCh, newStartIdx) oldStartVnode = oldCh[++oldStartIdx] newStartVnode = newCh[++newStartIdx] // 两个 VNode 的结尾是相同的 VNode,同样进行 patchVnode 操作。并将 oldEndVnode 与 newEndVnode 向前移动一位。 } else if (sameVnode(oldEndVnode, newEndVnode)) { patchVnode(oldEndVnode, newEndVnode, insertedVnodeQueue, newCh, newEndIdx) oldEndVnode = oldCh[--oldEndIdx] newEndVnode = newCh[--newEndIdx] // oldStartVnode 与 newEndVnode 符合 sameVnode 的时候, // 将 oldStartVnode.elm 这个节点直接移动到 oldEndVnode.elm 这个节点的后面即可。 // 然后 oldStartIdx 向后移动一位,newEndIdx 向前移动一位。 } else if (sameVnode(oldStartVnode, newEndVnode)) { // Vnode moved right patchVnode(oldStartVnode, newEndVnode, insertedVnodeQueue, newCh, newEndIdx) canMove && nodeOps.insertBefore(parentElm, oldStartVnode.elm, nodeOps.nextSibling(oldEndVnode.elm)) oldStartVnode = oldCh[++oldStartIdx] newEndVnode = newCh[--newEndIdx] // oldEndVnode 与 newStartVnode 符合 sameVnode 时, // 将 oldEndVnode.elm 插入到 oldStartVnode.elm 前面。 // oldEndIdx 向前移动一位,newStartIdx 向后移动一位。 } else if (sameVnode(oldEndVnode, newStartVnode)) { // Vnode moved left patchVnode(oldEndVnode, newStartVnode, insertedVnodeQueue, newCh, newStartIdx) canMove && nodeOps.insertBefore(parentElm, oldEndVnode.elm, oldStartVnode.elm) oldEndVnode = oldCh[--oldEndIdx] newStartVnode = newCh[++newStartIdx] } else { // createKeyToOldIdx 的作用是产生 key 与 index 索引对应的一个 map 表 if (isUndef(oldKeyToIdx)) oldKeyToIdx = createKeyToOldIdx(oldCh, oldStartIdx, oldEndIdx) idxInOld = isDef(newStartVnode.key) ? oldKeyToIdx[newStartVnode.key] : findIdxInOld(newStartVnode, oldCh, oldStartIdx, oldEndIdx) // 如果没有找到相同的节点,则通过 createElm 创建一个新节点,并将 newStartIdx 向后移动一位。 if (isUndef(idxInOld)) { // New element createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm, false, newCh, newStartIdx) } else { vnodeToMove = oldCh[idxInOld] // 如果找到了节点,同时它符合 sameVnode,则将这两个节点进行 patchVnode,将该位置的老节点赋值 undefined // 同时将 newStartVnode.elm 插入到 oldStartVnode.elm 的前面 if (sameVnode(vnodeToMove, newStartVnode)) { patchVnode(vnodeToMove, newStartVnode, insertedVnodeQueue, newCh, newStartIdx) oldCh[idxInOld] = undefined canMove && nodeOps.insertBefore(parentElm, vnodeToMove.elm, oldStartVnode.elm) } else { // 如果不符合 sameVnode,只能创建一个新节点插入到 parentElm 的子节点中,newStartIdx 往后移动一位。 createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm, false, newCh, newStartIdx) } } newStartVnode = newCh[++newStartIdx] } } // 当 while 循环结束以后,如果 oldStartIdx > oldEndIdx,说明老节点比对完了,但是新节点还有多的, // 需要将新节点插入到真实 DOM 中去,调用 addVnodes 将这些节点插入即可。 if (oldStartIdx > oldEndIdx) { refElm = isUndef(newCh[newEndIdx + 1]) ? null : newCh[newEndIdx + 1].elm addVnodes(parentElm, refElm, newCh, newStartIdx, newEndIdx, insertedVnodeQueue) // 如果满足 newStartIdx > newEndIdx 条件,说明新节点比对完了,老节点还有多, // 将这些无用的老节点通过 removeVnodes 批量删除即可。 } else if (newStartIdx > newEndIdx) { removeVnodes(oldCh, oldStartIdx, oldEndIdx) } }
vue2
的diff
算法采用的是双端比较
,所谓双端比较
就是新列表和旧列表两个列表的头与尾互相对比,在对比的过程中指针会逐渐向内靠拢,直到某一个列表的节点全部遍历过,对比停止。
首尾对比的四种情况
我们首先来看看首尾对比的四种情况。
使用旧列表的头一个节点
oldStartNode
与新列表的头一个节点newStartNode
对比使用旧列表的最后一个节点
oldEndNode
与新列表的最后一个节点newEndNode
对比使用旧列表的头一个节点
oldStartNode
与新列表的最后一个节点newEndNode
对比使用旧列表的最后一个节点
oldEndNode
与新列表的头一个节点newStartNode
对比
首先是 oldStartVnode
与 newStartVnode
符合 sameVnode
时,说明老 VNode 节点的头部与新 VNode 节点的头部是相同的 VNode 节点,直接进行 patchVnode
,同时 oldStartIdx
与 newStartIdx
向后移动一位。
其次是 oldEndVnode
与 newEndVnode
符合 sameVnode
,也就是两个 VNode 的结尾是相同的 VNode,同样进行 patchVnode
操作并将 oldEndVnode
与 newEndVnode
向前移动一位。
接下来是两种交叉的情况。
先是 oldStartVnode
与 newEndVnode
符合 sameVnode
的时候,也就是老 VNode 节点的头部与新 VNode 节点的尾部是同一节点的时候,将 oldStartVnode.elm
这个节点直接移动到 oldEndVnode.elm
这个节点的后面即可。然后 oldStartIdx
向后移动一位,newEndIdx
向前移动一位。
同理,oldEndVnode
与 newStartVnode
符合 sameVnode
时,也就是老 VNode 节点的尾部与新 VNode 节点的头部是同一节点的时候,将 oldEndVnode.elm
插入到 oldStartVnode.elm
前面。同样的,oldEndIdx
向前移动一位,newStartIdx
向后移动一位。
最后是当以上情况都不符合的时候,这种情况怎么处理呢?
查找对比
那就是查找对比。
首先通过createKeyToOldIdx
方法生成oldVnode
的key
与 index
索引对应的一个 map
表。
然后我们根据newStartVnode.key
,可以快速地从 oldKeyToIdx
(createKeyToOldIdx
的返回值)中获取相同 key
的节点的索引 idxInOld
,然后找到相同的节点。
这里又分三种情况
如果没有找到相同的节点,则通过
createElm
创建一个新节点,并将newStartIdx
向后移动一位。如果找到了节点,同时它符合
sameVnode
,则将这两个节点进行patchVnode
,将该位置的老节点赋值undefined
(之后如果还有新节点与该节点key相同可以检测出来提示已有重复的 key ),同时将newStartVnode.elm
插入到oldStartVnode.elm
的前面。同理,newStartIdx
往后移动一位。
如果不符合
sameVnode
,只能创建一个新节点插入到parentElm
的子节点中,newStartIdx
往后移动一位。
添加、删除节点
最后一步就很容易啦,当 while
循环结束以后,如果 oldStartIdx > oldEndIdx
,说明老节点比对完了,但是新节点还有多的,需要将新节点插入到真实 DOM 中去,调用 addVnodes
将这些节点插入即可。
同理,如果满足 newStartIdx > newEndIdx
条件,说明新节点比对完了,老节点还有多,将这些无用的老节点通过 removeVnodes
批量删除即可。
总结
Diff算法是一种对比算法。对比两者是旧虚拟DOM和新虚拟DOM
,对比出是哪个虚拟节点
更改了,找出这个虚拟节点
,并只更新这个虚拟节点所对应的真实节点
,而不用更新其他数据没发生改变的节点,实现精准
地更新真实DOM,进而提高效率和性能
。
精准
主要体现在,diff
算法首先就是找到可复用的节点,然后移动到正确的位置。当元素没有找到的话再来创建新节点。
扩展
vue中为什么需要使用key,它的作用是什么?
key
是 Vue
中 vnode
的唯一标记,通过这个 key
,diff
操作可以更准确、更快速。
- 更准确:因为带
key
就不是就地复用了,在sameNode
函数a.key === b.key
对比中可以避免就地复用的情况。所以会更加准确。 - 更快速:利用
key
的唯一性生成map
对象来获取对应节点,比遍历方式更快。
为什么不推荐使用index作为key
当我们的列表只涉及到 展示,不涉及到排序、删除、添加的时候使用index
作为key
是没什么问题的。因为此时的index
在每个元素上是唯一的。
但是如果涉及到排序、删除、添加的时候就不能再使用index
作为key
了,因为每个元素key
不再唯一了。不唯一的key
,对diff
算法没有任何帮助,写和没写是一样的。
以上是深入理解vue2中的VNode和diff算法的详细内容。更多信息请关注PHP中文网其他相关文章!

Netflix使用React作为其前端框架。1)React的组件化开发模式和强大生态系统是Netflix选择它的主要原因。2)通过组件化,Netflix将复杂界面拆分成可管理的小块,如视频播放器、推荐列表和用户评论。3)React的虚拟DOM和组件生命周期优化了渲染效率和用户交互管理。

Netflix在前端技术上的选择主要集中在性能优化、可扩展性和用户体验三个方面。1.性能优化:Netflix选择React作为主要框架,并开发了SpeedCurve和Boomerang等工具来监控和优化用户体验。2.可扩展性:他们采用微前端架构,将应用拆分为独立模块,提高开发效率和系统扩展性。3.用户体验:Netflix使用Material-UI组件库,通过A/B测试和用户反馈不断优化界面,确保一致性和美观性。

NetflixusesAcustomFrameworkcalled“ Gibbon” BuiltonReact,notReactorVueDirectly.1)TeamExperience:selectBasedAsedonFamiliarity.2)ProjectComplexity:vueforsimplerprojects,vueforsimplerprojects,reactforforforecomplexones.3)cocatizationNeedsneeds:reactofficatizationneedneeds:reactofferizationneedneedneedneeds:reactoffersizatization needeffersefersmoreflexiblesimore.4)ecosyaka

Netflix在框架选择上主要考虑性能、可扩展性、开发效率、生态系统、技术债务和维护成本。1.性能与可扩展性:选择Java和SpringBoot以高效处理海量数据和高并发请求。2.开发效率与生态系统:使用React提升前端开发效率,利用其丰富的生态系统。3.技术债务与维护成本:选择Node.js构建微服务,降低维护成本和技术债务。

Netflix主要使用React作为前端框架,辅以Vue用于特定功能。1)React的组件化和虚拟DOM提升了Netflix应用的性能和开发效率。2)Vue在Netflix的内部工具和小型项目中应用,其灵活性和易用性是关键。

Vue.js是一种渐进式JavaScript框架,适用于构建复杂的用户界面。1)其核心概念包括响应式数据、组件化和虚拟DOM。2)实际应用中,可以通过构建Todo应用和集成VueRouter来展示其功能。3)调试时,建议使用VueDevtools和console.log。4)性能优化可通过v-if/v-show、列表渲染优化和异步加载组件等实现。

Vue.js适合小型到中型项目,而React更适用于大型、复杂应用。1.Vue.js的响应式系统通过依赖追踪自动更新DOM,易于管理数据变化。2.React采用单向数据流,数据从父组件流向子组件,提供明确的数据流向和易于调试的结构。

Vue.js适合中小型项目和快速迭代,React适用于大型复杂应用。1)Vue.js易于上手,适用于团队经验不足或项目规模较小的情况。2)React的生态系统更丰富,适合有高性能需求和复杂功能需求的项目。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

SublimeText3 Linux新版
SublimeText3 Linux最新版

Dreamweaver CS6
视觉化网页开发工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。