搜索
首页数据库RedisRedis特殊数据类型之stream

本篇文章给大家带来了关于Redis的相关知识,其中主要介绍了一个特殊的数据类型stream的相关内容,redis提供了丰富的数据类型,特殊的有四种bitmap、hyperloglog、geospatial、stream,下面就一起来看一下stream的相关问题,希望对大家有帮助。

Redis特殊数据类型之stream

推荐学习:Redis视频教程

Redis Stream 是 Redis 5.0 版本新增加的数据类型,Redis 专门为消息队列设计的数据类型。

在 Redis 5.0 Stream 没出来之前,消息队列的实现方式都有着各自的缺陷,例如:

  • 发布订阅模式,不能持久化也就无法可靠的保存消息,并且对于离线重连的客户端不能读取历史消息的缺陷;

  • List 实现消息队列的方式不能重复消费,一个消息消费完就会被删除,而且生产者需要自行实现全局唯一 ID。

基于以上问题,Redis 5.0 便推出了 Stream 类型也是此版本最重要的功能,用于完美地实现消息队列,它支持消息的持久化、支持自动生成全局唯一 ID、支持 ack 确认消息的模式、支持消费组模式等,让消息队列更加的稳定和可靠。

常用命令

Stream 消息队列操作命令:

  • XADD : 插入消息,保证有序,可以自动生成全局唯一 ID

  • XDEL : 根据消息 ID 删除消息;

  • DEL : 删除整个 Stream;

# XADD key [NOMKSTREAM] [MAXLEN|MINID [=|~] threshold [LIMIT count]] *|id field value [field value ...]
127.0.0.1:6379> XADD s1 * name sid10t
"1665047636078-0"
127.0.0.1:6379> XADD s1 * name sidiot
"1665047646214-0"
# XDEL key id [id ...]
127.0.0.1:6379> XDEL s1 1665047646214-0
(integer) 1
# DEL key [key ...]
127.0.0.1:6379> DEL s1
(integer) 1

57.png

  • XLEN : 查询消息长度;

  • XREAD : 用于读取消息,可以按 ID 读取数据;

  • XRANGE : 读取区间消息;

  • XTRIM : 裁剪队列消息个数;

# XLEN key
127.0.0.1:6379> XLEN s1
(integer) 2
# XREAD [COUNT count] [BLOCK milliseconds] STREAMS key [key ...] id [id ...]
127.0.0.1:6379> XREAD streams s1 0-0
1) 1) "s1"
   2) 1) 1) "1665047636078-0"
         2) 1) "name"
            2) "sid10t"
      2) 1) "1665047646214-0"
         2) 1) "name"
            2) "sidiot"
127.0.0.1:6379> XREAD count 1 streams s1 0-0
1) 1) "s1"
   2) 1) 1) "1665047636078-0"
         2) 1) "name"
            2) "sid10t"
    # XADD 了一条消息之后的扩展
    127.0.0.1:6379> XREAD streams s1 1665047636078-0
    1) 1) "s1"
       2) 1) 1) "1665047646214-0"
             2) 1) "name"
                2) "sidiot"
          2) 1) "1665053702766-0"
             2) 1) "age"
                2) "18"
# XRANGE key start end [COUNT count]
127.0.0.1:6379> XRANGE s1 - +
1) 1) "1665047636078-0"
   2) 1) "name"
      2) "sid10t"
2) 1) "1665047646214-0"
   2) 1) "name"
      2) "sidiot"
3) 1) "1665053702766-0"
   2) 1) "age"
      2) "18"
127.0.0.1:6379> XRANGE s1 1665047636078-0 1665047646214-0
1) 1) "1665047636078-0"
   2) 1) "name"
      2) "sid10t"
2) 1) "1665047646214-0"
   2) 1) "name"
      2) "sidiot"
# XTRIM key MAXLEN|MINID [=|~] threshold [LIMIT count]
127.0.0.1:6379> XLEN s1
(integer) 3
127.0.0.1:6379> XTRIM s1 maxlen 2
(integer) 1
127.0.0.1:6379> XLEN s1
(integer) 2
  • XGROUP CREATE : 创建消费者组;

  • XREADGROUP : 按消费组形式读取消息;

  • XPENDING 和 XACK :

XPENDING 命令可以用来查询每个消费组内所有消费者「已读取、但尚未确认」的消息; 

XACK 命令用于向消息队列确认消息处理已完成;

# XGROUP CREATE key groupname id|$ [MKSTREAM] [ENTRIESREAD entries_read]
# 需要注意的是,XGROUP CREATE 的 streams 必须是一个存在的 streams,否则会报错;
127.0.0.1:6379> XGROUP CREATE myStream cGroup-top 0-0
(error) ERR The XGROUP subcommand requires the key to exist. Note that for CREATE you may want to use the MKSTREAM option to create an empty stream automatically.
# 0-0 从头开始消费,$ 从尾开始消费;
127.0.0.1:6379> XADD myStream * name sid10t
"1665057823181-0"
127.0.0.1:6379> XGROUP CREATE myStream cGroup-top 0-0
OK
127.0.0.1:6379> XGROUP CREATE myStream cGroup-tail $
OK
# XREADGROUP GROUP group consumer [COUNT count] [BLOCK milliseconds] [NOACK] STREAMS key [key ...] id [id ...]
127.0.0.1:6379> XREADGROUP Group cGroup-top name count 2 STREAMS myStream >
1) 1) "myStream"
   2) 1) 1) "1665058086931-0"
         2) 1) "name"
            2) "sid10t"
      2) 1) "1665058090167-0"
         2) 1) "name"
            2) "sidiot"

应用场景

消息队列

生产者通过 XADD 命令插入一条消息:

# * 表示让 Redis 为插入的数据自动生成一个全局唯一的 ID
# 往名称为 mymq 的消息队列中插入一条消息,消息的键是 name,值是 sid10t
127.0.0.1:6379> XADD mymq * name sid10t
"1665058759764-0"

插入成功后会返回全局唯一的 ID:"1665058759764-0"。消息的全局唯一 ID 由两部分组成:

  • 第一部分 “1665058759764” 是数据插入时,以毫秒为单位计算的当前服务器时间;

  • 第二部分表示插入消息在当前毫秒内的消息序号,这是从 0 开始编号的。例如,“1665058759764-0” 就表示在 “1665058759764” 毫秒内的第 1 条消息。

消费者通过 XREAD 命令从消息队列中读取消息时,可以指定一个消息 ID,并从这个消息 ID 的下一条消息开始进行读取(注意是输入消息 ID 的下一条信息开始读取,不是查询输入 ID 的消息)。

127.0.0.1:6379> XREAD STREAMS mymq 1665058759764-0
(nil)
127.0.0.1:6379> XREAD STREAMS mymq 1665058759763-0
1) 1) "mymq"
   2) 1) 1) "1665058759764-0"
         2) 1) "name"
            2) "sid10t"

如果想要实现阻塞读(当没有数据时,阻塞住),可以调用 XRAED 时设定 BLOCK 配置项,实现类似于 BRPOP 的阻塞读取操作。

比如,下面这命令,设置了 BLOCK 10000 的配置项,10000 的单位是毫秒,表明 XREAD 在读取最新消息时,如果没有消息到来,XREAD 将阻塞 10000 毫秒(即 10 秒),然后再返回。

# 命令最后的 $ 符号表示读取最新的消息
127.0.0.1:6379> XREAD BLOCK 10000 STREAMS mymq $
(nil)
(10.01s)

Stream 的基础方法,使用 xadd 存入消息和 xread 循环阻塞读取消息的方式可以实现简易版的消息队列,交互流程如下图所示:

61.png

前面介绍的这些操作 List 也支持的,接下来看看 Stream 特有的功能。

Stream 可以以使用 XGROUP 创建消费组,创建消费组之后,Stream 可以使用 XREADGROUP 命令让消费组内的消费者读取消息。

创建两个消费组,这两个消费组消费的消息队列是 mymq,都指定从第一条消息开始读取:

# 创建一个名为 group1 的消费组,0-0 表示从第一条消息开始读取。
127.0.0.1:6379> XGROUP CREATE mymq group1 0-0
OK
# 创建一个名为 group2 的消费组,0-0 表示从第一条消息开始读取。
127.0.0.1:6379> XGROUP CREATE mymq group2 0-0
OK

消费组 group1 内的消费者 consumer1 从 mymq 消息队列中读取所有消息的命令如下:

# 命令最后的参数“>”,表示从第一条尚未被消费的消息开始读取。
127.0.0.1:6379> XREADGROUP GROUP group1 consumer1 STREAMS mymq >
1) 1) "mymq"
   2) 1) 1) "1665058759764-0"
         2) 1) "name"
            2) "sid10t"

消息队列中的消息一旦被消费组里的一个消费者读取了,就不能再被该消费组内的其他消费者读取了,即同一个消费组里的消费者不能消费同一条消息。

比如说,我们执行完刚才的 XREADGROUP 命令后,再执行一次同样的命令,此时读到的就是空值了:

127.0.0.1:6379> XREADGROUP GROUP group1 consumer1 STREAMS mymq >
(nil)

但是,不同消费组的消费者可以消费同一条消息(但是有前提条件,创建消息组的时候,不同消费组指定了相同位置开始读取消息) 。

比如说,刚才 group1 消费组里的 consumer1 消费者消费了一条 id 为 1665058759764-0 的消息,现在用 group2 消费组里的 consumer1 消费者消费消息:

127.0.0.1:6379> XREADGROUP GROUP group2 consumer1 STREAMS mymq >
1) 1) "mymq"
   2) 1) 1) "1665058759764-0"
         2) 1) "name"
            2) "sid10t"

因为我创建两组的消费组都是从第一条消息开始读取,所以可以看到第二组的消费者依然可以消费 id 为 1665058759764-0 的这一条消息。因此,不同的消费组的消费者可以消费同一条消息。

使用消费组的目的是让组内的多个消费者共同分担读取消息,所以,我们通常会让每个消费者读取部分消息,从而实现消息读取负载在多个消费者间是均衡分布的。

例如,我们执行下列命令,让 group2 中的 consumer1、2、3 各自读取一条消息。

# 让 group2 中的 consumer1 从 mymq 消息队列中消费一条消息
127.0.0.1:6379> XREADGROUP GROUP group2 consumer1 COUNT 1 STREAMS mymq >
1) 1) "mymq"
   2) 1) 1) "1665060632864-0"
         2) 1) "name"
            2) "sid10t"
            
# 让 group2 中的 consumer2 从 mymq 消息队列中消费一条消息
127.0.0.1:6379> XREADGROUP GROUP group2 consumer2 COUNT 1 STREAMS mymq >
1) 1) "mymq"
   2) 1) 1) "1665060633903-0"
         2) 1) "name"
            2) "sid10t"
            
# 让 group2 中的 consumer3 从 mymq 消息队列中消费一条消息
127.0.0.1:6379> XREADGROUP GROUP group2 consumer3 COUNT 1 STREAMS mymq >
1) 1) "mymq"
   2) 1) 1) "1665060634962-0"
         2) 1) "name"
            2) "sid10t"

基于 Stream 实现的消息队列,如何保证消费者在发生故障或宕机再次重启后,仍然可以读取未处理完的消息?

Streams 会自动使用内部队列(也称为 PENDING List)留存消费组里每个消费者读取的消息,直到消费者使用 XACK 命令通知 Streams “消息已经处理完成”。

消费确认增加了消息的可靠性,一般在业务处理完成之后,需要执行 XACK 命令确认消息已经被消费完成,整个流程的执行如下图所示:

62.png

如果消费者没有成功处理消息,它就不会给 Streams 发送 XACK 命令,消息仍然会留存。此时,消费者可以在重启后,用 XPENDING 命令查看已读取、但尚未确认处理完成的消息。

例如,我们来查看一下 group2 中各个消费者已读取、但尚未确认的消息个数,命令如下:

127.0.0.1:6379> XPENDING mymq group2
1) (integer) 4
2) "1665058759764-0"
3) "1665060634962-0"
4) 1) 1) "consumer1"
      2) "2"
   2) 1) "consumer2"
      2) "1"
   3) 1) "consumer3"
      2) "1"

如果想查看某个消费者具体读取了哪些数据,可以执行下面的命令:

# 查看 group2 里 consumer2 已从 mymq 消息队列中读取了哪些消息
127.0.0.1:6379> XPENDING mymq group2 - + 10 consumer2
1) 1) "1665060633903-0"
   2) "consumer2"
   3) (integer) 1888805
   4) (integer) 1

可以看到,consumer2 已读取的消息的 ID 是 1665060633903-0。

一旦消息 1665060633903-0 被 consumer2 处理了,consumer2 就可以使用 XACK 命令通知 Streams,然后这条消息就会被删除。

127.0.0.1:6379> XACK mymq group2 1665060633903-0
(integer) 1

当我们再使用 XPENDING 命令查看时,就可以看到,consumer2 已经没有已读取、但尚未确认处理的消息了。

127.0.0.1:6379> XPENDING mymq group2 - + 10 consumer2
(empty array)

小结

好了,基于 Stream 实现的消息队列就说到这里了,小结一下:

  • 消息保序:XADD/XREAD

  • 阻塞读取:XREAD block

  • 重复消息处理:Stream 在使用 XADD 命令,会自动生成全局唯一 ID;

  • 消息可靠性:内部使用 PENDING List 自动保存消息,使用 XPENDING 命令查看消费组已经读取但是未被确认的消息,消费者使用 XACK 确认消息;

  • 支持消费组形式消费数据

Redis 基于 Stream 消息队列与专业的消息队列有哪些差距?

一个专业的消息队列,必须要做到两大块:

  • 消息不可丢。

  • 消息可堆积。

1、Redis Stream 消息会丢失吗?

使用一个消息队列,其实就分为三大块:生产者、队列中间件、消费者,所以要保证消息就是保证三个环节都不能丢失数据。

63.png

Redis Stream 消息队列能不能保证三个环节都不丢失数据?

  • Redis 生产者会不会丢消息?生产者会不会丢消息,取决于生产者对于异常情况的处理是否合理。 从消息被生产出来,然后提交给 MQ 的过程中,只要能正常收到 ( MQ 中间件) 的 ack 确认响应,就表示发送成功,所以只要处理好返回值和异常,如果返回异常则进行消息重发,那么这个阶段是不会出现消息丢失的。

  • Redis 消费者会不会丢消息?不会,因为 Stream ( MQ 中间件)会自动使用内部队列(也称为 PENDING List)留存消费组里每个消费者读取的消息,但是未被确认的消息。消费者可以在重启后,用 XPENDING 命令查看已读取、但尚未确认处理完成的消息。等到消费者执行完业务逻辑后,再发送消费确认 XACK 命令,也能保证消息的不丢失。

  • Redis 消息中间件会不会丢消息?会,Redis 在以下 2 个场景下,都会导致数据丢失:

AOF 持久化配置为每秒写盘,但这个写盘过程是异步的,Redis 宕机时会存在数据丢失的可能;

主从复制也是异步的,主从切换时,也存在丢失数据的可能 (opens new window)。

可以看到,Redis 在队列中间件环节无法保证消息不丢。像 RabbitMQ 或 Kafka 这类专业的队列中间件,在使用时是部署一个集群,生产者在发布消息时,队列中间件通常会写「多个节点」,也就是有多个副本,这样一来,即便其中一个节点挂了,也能保证集群的数据不丢失。

2、Redis Stream 消息可堆积吗?

Redis 的数据都存储在内存中,这就意味着一旦发生消息积压,则会导致 Redis 的内存持续增长,如果超过机器内存上限,就会面临被 OOM 的风险。

所以 Redis 的 Stream 提供了可以指定队列最大长度的功能,就是为了避免这种情况发生。

当指定队列最大长度时,队列长度超过上限后,旧消息会被删除,只保留固定长度的新消息。这么来看,Stream 在消息积压时,如果指定了最大长度,还是有可能丢失消息的。

但 Kafka、RabbitMQ 专业的消息队列它们的数据都是存储在磁盘上,当消息积压时,无非就是多占用一些磁盘空间。

因此,把 Redis 当作队列来使用时,会面临的 2 个问题:

  • Redis 本身可能会丢数据;

  • 面对消息挤压,内存资源会紧张;

所以,能不能将 Redis 作为消息队列来使用,关键看你的业务场景:

  • 如果你的业务场景足够简单,对于数据丢失不敏感,而且消息积压概率比较小的情况下,把 Redis 当作队列是完全可以的。

  • 如果你的业务有海量消息,消息积压的概率比较大,并且不能接受数据丢失,那么还是用专业的消息队列中间件吧。

补充:Redis 发布/订阅机制为什么不可以作为消息队列?

发布订阅机制存在以下缺点,都是跟丢失数据有关:

  • 发布/订阅机制没有基于任何数据类型实现,所以不具备「数据持久化」的能力,也就是发布/订阅机制的相关操作,不会写入到 RDB 和 AOF 中,当 Redis 宕机重启,发布/订阅机制的数据也会全部丢失。

  • 发布订阅模式是 “发后既忘” 的工作模式,如果有订阅者离线重连之后不能消费之前的历史消息。

  • 当消费端有一定的消息积压时,也就是生产者发送的消息,消费者消费不过来时,如果超过 32M 或者是 60s 内持续保持在 8M 以上,消费端会被强行断开,这个参数是在配置文件中设置的,默认值是 client-output-buffer-limit pubsub 32mb 8mb 60。

所以,发布/订阅机制只适合即使通讯的场景,比如构建哨兵集群 (opens new window)的场景采用了发布/订阅机制。

推荐学习:Redis视频教程

以上是Redis特殊数据类型之stream的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:掘金。如有侵权,请联系admin@php.cn删除
Redis是SQL还是NOSQL数据库?答案解释了Redis是SQL还是NOSQL数据库?答案解释了Apr 18, 2025 am 12:11 AM

RedisisclassifiedasaNoSQLdatabasebecauseitusesakey-valuedatamodelinsteadofthetraditionalrelationaldatabasemodel.Itoffersspeedandflexibility,makingitidealforreal-timeapplicationsandcaching,butitmaynotbesuitableforscenariosrequiringstrictdataintegrityo

REDIS:提高应用程序性能和可扩展性REDIS:提高应用程序性能和可扩展性Apr 17, 2025 am 12:16 AM

Redis通过缓存数据、实现分布式锁和数据持久化来提升应用性能和可扩展性。1)缓存数据:使用Redis缓存频繁访问的数据,提高数据访问速度。2)分布式锁:利用Redis实现分布式锁,确保在分布式环境中操作的安全性。3)数据持久化:通过RDB和AOF机制保证数据安全性,防止数据丢失。

REDIS:探索其数据模型和结构REDIS:探索其数据模型和结构Apr 16, 2025 am 12:09 AM

Redis的数据模型和结构包括五种主要类型:1.字符串(String):用于存储文本或二进制数据,支持原子操作。2.列表(List):有序元素集合,适合队列和堆栈。3.集合(Set):无序唯一元素集合,支持集合运算。4.有序集合(SortedSet):带分数的唯一元素集合,适用于排行榜。5.哈希表(Hash):键值对集合,适合存储对象。

REDIS:对其数据库方法进行分类REDIS:对其数据库方法进行分类Apr 15, 2025 am 12:06 AM

Redis的数据库方法包括内存数据库和键值存储。1)Redis将数据存储在内存中,读写速度快。2)它使用键值对存储数据,支持复杂数据结构,如列表、集合、哈希表和有序集合,适用于缓存和NoSQL数据库。

为什么要使用redis?利益和优势为什么要使用redis?利益和优势Apr 14, 2025 am 12:07 AM

Redis是一个强大的数据库解决方案,因为它提供了极速性能、丰富的数据结构、高可用性和扩展性、持久化能力以及广泛的生态系统支持。1)极速性能:Redis的数据存储在内存中,读写速度极快,适合高并发和低延迟应用。2)丰富的数据结构:支持多种数据类型,如列表、集合等,适用于多种场景。3)高可用性和扩展性:支持主从复制和集群模式,实现高可用性和水平扩展。4)持久化和数据安全:通过RDB和AOF两种方式实现数据持久化,确保数据的完整性和可靠性。5)广泛的生态系统和社区支持:拥有庞大的生态系统和活跃社区,

了解NOSQL:Redis的关键特征了解NOSQL:Redis的关键特征Apr 13, 2025 am 12:17 AM

Redis的关键特性包括速度、灵活性和丰富的数据结构支持。1)速度:Redis作为内存数据库,读写操作几乎瞬时,适用于缓存和会话管理。2)灵活性:支持多种数据结构,如字符串、列表、集合等,适用于复杂数据处理。3)数据结构支持:提供字符串、列表、集合、哈希表等,适合不同业务需求。

REDIS:确定其主要功能REDIS:确定其主要功能Apr 12, 2025 am 12:01 AM

Redis的核心功能是高性能的内存数据存储和处理系统。1)高速数据访问:Redis将数据存储在内存中,提供微秒级别的读写速度。2)丰富的数据结构:支持字符串、列表、集合等,适应多种应用场景。3)持久化:通过RDB和AOF方式将数据持久化到磁盘。4)发布订阅:可用于消息队列或实时通信系统。

REDIS:流行数据结构指南REDIS:流行数据结构指南Apr 11, 2025 am 12:04 AM

Redis支持多种数据结构,具体包括:1.字符串(String),适合存储单一值数据;2.列表(List),适用于队列和栈;3.集合(Set),用于存储不重复数据;4.有序集合(SortedSet),适用于排行榜和优先级队列;5.哈希表(Hash),适合存储对象或结构化数据。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前By尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版