搜索
首页后端开发Python教程实例详解Pytorch中的tensor数据结构

【相关推荐:Python3视频教程

torch.Tensor

torch.Tensor 是一种包含单一数据类型元素的多维矩阵,类似于 numpy 的 array
Tensor 可以使用 torch.tensor() 转换 Python 的 list 或序列数据生成,生成的是dtype 默认是 torch.FloatTensor

注意 torch.tensor() 总是拷贝 data。如果你有一个 Tensor data 并且仅仅想改变它的 requires_grad 属性,可用 requires_grad_() 或者 detach() 来避免拷贝。如果你有一个 numpy 数组并且想避免拷贝,请使用 torch.as_tensor()

1,指定数据类型的 Tensor 可以通过传递参数 torch.dtype 和/或者 torch.device 到构造函数生成:

注意为了改变已有的 tensor 的 torch.device 和/或者 torch.dtype, 考虑使用 to() 方法.

>>> torch.ones([2,3], dtype=torch.float64, device="cuda:0")
tensor([[1., 1., 1.],
        [1., 1., 1.]], device='cuda:0', dtype=torch.float64)
>>> torch.ones([2,3], dtype=torch.float32)
tensor([[1., 1., 1.],
        [1., 1., 1.]])

2,Tensor 的内容可以通过 Python索引或者切片访问以及修改:

>>> matrix = torch.tensor([[2,3,4],[5,6,7]])
>>> print(matrix[1][2])
tensor(7)
>>> matrix[1][2] = 9
>>> print(matrix)
tensor([[2, 3, 4],
        [5, 6, 9]])

3,使用 torch.Tensor.item() 或者 int() 方法从只有一个值的 Tensor中获取 Python Number:

>>> x = torch.tensor([[4.5]])
>>> x
tensor([[4.5000]])
>>> x.item()
4.5
>>> int(x)
4

4,Tensor可以通过参数 requires_grad=True 创建, 这样 torch.autograd 会记录相关的运算实现自动求导:

>>> x = torch.tensor([[1., -1.], [1., 1.]], requires_grad=True)
>>> out = x.pow(2).sum()
>>> out.backward()
>>> x.grad
tensor([[ 2.0000, -2.0000],
 [ 2.0000,  2.0000]])

5,每一个 tensor都有一个相应的 torch.Storage 保存其数据。tensor 类提供了一个多维的、strided 视图, 并定义了数值操作。

Tensor 数据类型

Torch 定义了七种 CPU tensor 类型和八种 GPU tensor 类型:

tensor数据类型

torch.Tensor 是默认的 tensor 类型(torch.FloatTensor)的简称,即 32 位浮点数数据类型。

Tensor 的属性

Tensor 有很多属性,包括数据类型、Tensor 的维度、Tensor 的尺寸。

  • 数据类型:可通过改变 torch.tensor() 方法的 dtype 参数值,来设定不同的 tensor 数据类型。
  • 维度:不同类型的数据可以用不同维度(dimension)的张量来表示。标量为 0 维张量,向量为 1 维张量,矩阵为 2 维张量。彩色图像有 rgb 三个通道,可以表示为 3 维张量。视频还有时间维,可以表示为 4 维张量,有几个中括号 [ 维度就是几。可使用 dim() 方法 获取 tensor 的维度。
  • 尺寸:可以使用 shape属性或者 size()方法查看张量在每一维的长度,可以使用 view()方法或者reshape() 方法改变张量的尺寸。

样例代码如下:

matrix = torch.tensor([[[1,2,3,4],[5,6,7,8]],
                       [[5,4,6,7], [5,6,8,9]]], dtype = torch.float64)
print(matrix)               # 打印 tensor
print(matrix.dtype)     # 打印 tensor 数据类型
print(matrix.dim())     # 打印 tensor 维度
print(matrix.size())     # 打印 tensor 尺寸
print(matrix.shape)    # 打印 tensor 尺寸
matrix2 = matrix.view(4, 2, 2) # 改变 tensor 尺寸
print(matrix2)

程序输出结果如下:

tensor属性


view 和 reshape 的区别

两个方法都是用来改变 tensor 的 shape,view() 只适合对满足连续性条件(contiguous)的 tensor 进行操作,而 reshape() 同时还可以对不满足连续性条件的 tensor 进行操作。在满足 tensor 连续性条件(contiguous)时,a.reshape() 返回的结果与a.view() 相同,都不会开辟新内存空间;不满足 contiguous 时, 直接使用 view() 方法会失败,reshape() 依然有用,但是会重新开辟内存空间,不与之前的 tensor 共享内存,即返回的是 ”副本“(等价于先调用 contiguous() 方法再使用 view() 方法)。
更多理解参考这篇文章

Tensor 与 ndarray

1,张量和 numpy 数组。可以用 .numpy() 方法从 Tensor 得到 numpy 数组,也可以用 torch.from_numpy 从 numpy 数组得到Tensor。这两种方法关联的 Tensor 和 numpy 数组是共享数据内存的。可以用张量的 clone方法拷贝张量,中断这种关联。

arr = np.random.rand(4,5)
print(type(arr))
tensor1 = torch.from_numpy(arr)
print(type(tensor1))
arr1 = tensor1.numpy()
print(type(arr1))
"""
<class &#39;numpy.ndarray&#39;>
<class &#39;torch.Tensor&#39;>
<class &#39;numpy.ndarray&#39;>
"""

2,item() 方法和 tolist() 方法可以将张量转换成 Python 数值和数值列表

# item方法和tolist方法可以将张量转换成Python数值和数值列表
scalar = torch.tensor(5)  # 标量
s = scalar.item()
print(s)
print(type(s))

tensor = torch.rand(3,2)  # 矩阵
t = tensor.tolist()
print(t)
print(type(t))
"""
1.0
<class &#39;float&#39;>
[[0.8211846351623535, 0.20020723342895508], [0.011571824550628662, 0.2906131148338318]]
<class &#39;list&#39;>
"""

创建 Tensor

创建 tensor ,可以传入数据或者维度,torch.tensor() 方法只能传入数据,torch.Tensor() 方法既可以传入数据也可以传维度,强烈建议 tensor() 传数据,Tensor() 传维度,否则易搞混。

传入维度的方法

方法名 方法功能 备注
torch.rand(*sizes, out=None) → Tensor 返回一个张量,包含了从区间 [0, 1)均匀分布中抽取的一组随机数。张量的形状由参数sizes定义。 推荐
torch.randn(*sizes, out=None) → Tensor 返回一个张量,包含了从标准正态分布(均值为0,方差为1,即高斯白噪声)中抽取的一组随机数。张量的形状由参数sizes定义。 不推荐
torch.normal(means, std, out=None) → Tensor 返回一个张量,包含了从指定均值 means 和标准差 std 的离散正态分布中抽取的一组随机数。标准差 std 是一个张量,包含每个输出元素相关的正态分布标准差。 多种形式,建议看源码
torch.rand_like(a) 根据数据 a 的 shape 来生成随机数据 不常用
torch.randint(low=0, high, size) 生成指定范围(low, hight)和 size 的随机整数数据 常用
torch.full([2, 2], 4) 生成给定维度,全部数据相等的数据 不常用
torch.arange(start=0, end, step=1, *, out=None) 生成指定间隔的数据 易用常用
torch.ones(*size, *, out=None) 生成给定 size 且值全为1 的矩阵数据 简单
zeros()/zeros_like()/eye() 0 的 tensor 和 对角矩阵 简单

样例代码:

>>> torch.rand([1,1,3,3])
tensor([[[[0.3005, 0.6891, 0.4628],
          [0.4808, 0.8968, 0.5237],
          [0.4417, 0.2479, 0.0175]]]])
>>> torch.normal(2, 3, size=(1, 4))
tensor([[3.6851, 3.2853, 1.8538, 3.5181]])
>>> torch.full([2, 2], 4)
tensor([[4, 4],
        [4, 4]])
>>> torch.arange(0,10,2)
tensor([0, 2, 4, 6, 8])
>>> torch.eye(3,3)
tensor([[1., 0., 0.],
        [0., 1., 0.],
        [0., 0., 1.]])

【相关推荐:Python3视频教程

以上是实例详解Pytorch中的tensor数据结构的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:脚本之家。如有侵权,请联系admin@php.cn删除
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前By尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
4 周前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版