搜索
首页数据库MongoDBMongoDB 4.X基础教程

MongoDB 4.X基础教程

Jul 18, 2022 am 10:09 AM
mongodb

一、MongoDB介绍 

  • MongoDB是一个基于分布式文件存储的数据库。

  • 由C++语言编写。旨在为WEB应用提供可扩展的 高性能数据存储解决方案。 

  • MongoDB是一个介于关系型数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。

  • MongoDB支持的数据结构非常松散,是类似JSON的BJSON格式,因此可以存储比较复 杂的数据类型。Mongo最大的特点是它支持的查询语言非常强大,其语法有点类似于面向对象的查询语 言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。 

  • MongoDB数据操作基于json格式 

<span style="font-size: 16px;"> { "userName":"admin", "password":123456 }<br/></span>

二、MongoDB安装 

1.MongoDB下载

  • 网址:https://www.mongodb.com/try/download/community

    1.png

  • 上图在选择版本的时候根据自己系统选择,有Windowns、LInux、CentOS、Ubuntu等可供 选择。

2.MongoDB安装 

  • 下载的 .msi 文件,下载后双击该文件,按操作提示安装即可。 

  • 安装过程中,你可以通过点击 "Custom(自定义)" 按钮来设置你的安装目录,建议不要安装在C 盘。 

2.png

全程点击next安装,但是这一步需要注意,这里是安装可视化组件,默认是选择状态,这里需 要取消选中,否则在安装的过程中要下载可视化组件,比较慢,甚至有时候会报错:

3.png

3.MongoDB环境变量配置 

  • 在桌面右键 此电脑>>>属性>>>高级系统设置>>>高级>>>环境变量>>>找到path>>>选择编辑 >>>新建 

4.png

  •  在打开的环境变量中MongoDB安装的bin路径复制到新建目录中

5.png

  • 然后点击所有的确定即可完成环境变量配置 

4.验证安装是否成功 

  • 打开CMD命令窗口,输入mongo,出现以下提示信息,说明安装成功。 

<span style="font-size: 16px;">C:\Users\***.DESKTOP-C1RC9P2>mongo<br/>MongoDB shell version v4.4.2-rc0<br/>connecting to: mongodb://127.0.0.1:27017/?compressors=disabled&gssapiServiceName=mongodb<br/>Implicit session: session { "id" : UUID("df31999e-cb62-4f71-8a18-7db8723c514f") }<br/>MongoDB server version: 4.4.2-rc0<br/>---<br/>The server generated these startup warnings when booting:<br/>        2020-10-30T16:25:16.503+08:00: Access control is not enabled for the database. Read and write access to data and configuration is unrestricted<br/>---<br/>---<br/>        Enable MongoDB&#39;s free cloud-based monitoring service, which will then receive and display<br/>        metrics about your deployment (disk utilization, CPU, operation statistics, etc).<br/><br/>        The monitoring data will be available on a MongoDB website with a unique URL accessible to you<br/>        and anyone you share the URL with. MongoDB may use this information to make product<br/>        improvements and to suggest MongoDB products and deployment options to you.<br/><br/>        To enable free monitoring, run the following command: db.enableFreeMonitoring()<br/>        To permanently disable this reminder, run the following command: db.disableFreeMonitoring()<br/></span>

三、MongoDB使用基本介绍 

  • MongoDB属于非关系型数据库,其数据库、表、字段等和关系型数据库 (如:MySQL数据库)有一定的差别; 

  • MongoDB中的集合就相当于关系型数据库中的表 MongoDB中的json字符串的键相当于关系型数据库中的列名; 

  • 在操作MongoDB数据的时候全部使用json数据格式。 

1.查看数据库名 

  • 查看所有数据库名 

<span style="font-size: 16px;">命令:<br/>  show dbs<br/></span>
<span style="font-size: 16px;">  > show dbs<br/>  admin   0.000GB<br/>  config  0.000GB<br/>  local   0.000GB<br/></span>
  • 这三个数据库是默认系统数据库,不能删除。 

2. 查看集合 

  • 查看集合前提是要先指定使用哪一个数据库

<span style="font-size: 16px;">命令:<br/>ues 数据库名 show collections<br/></span>
<span style="font-size: 16px;">> use admin <br/>switched to db admin <br/>> show collections <br/>system.version<br/></span>
  • system.version 就是admin这个数据库中的表 

3.查询集合中的数据 

  • 这里先简单介绍查询集合中的所有数据,方便后面学习。 

  • 查询集合中的所有数据,这里查询的是系统数据库admin中的 system.version 集合 

<span style="font-size: 16px;">命令:<br/>	db.集合名.find()<br/></span>
<span style="font-size: 16px;">> db.system.version.find()<br/>{ "_id" : "featureCompatibilityVersion", "version" : "4.4" }<br/></span>
  • 这里的_id是集合的键,每个集合里面默认存在,version是集合中的另一个键,相当于关系型 数据库中的字段 

四、创建数据库及添加数据 

MongoDB不能够直接创建数据库,需要添加一条数据才能创建 

1.创建数据库和插入数据 

  • 先指定创建的数据 

  • 然后执行添加数据命令 

<span style="font-size: 16px;">> use company<br/>switched to db company<br/>> db.emp.insert({"empno":100,"ename":"admin","sex":"男","age":20,"salary":800.00,"deptno":10})<br/>WriteResult({ "nInserted" : 1 })<br/></span>
  • 这里插入了6列数据,分别是员工的编号,姓名,性别,年龄,薪资及所在的部门 

<span style="font-size: 16px;">WriteResult({ "nInserted" : 1 })<br/></span>
  • 表示一行数据插入成功,说明创建数据成功,同时添加 了一套数据,我们可以继续添加

<span style="font-size: 16px;">>  db.emp.insert({"empno":101,"ename":"张三","sex":"女","age":30,"salary":2500.00,"deptno":20})})})})<br/>WriteResult({ "nInserted" : 1 })</span>
  • 随着数据的插入,数据库也随着创建成功。 

五、查询数据 

    查询所有数据,在查询数据前要先指定使用哪个数据库,再查询数据库中的所有集合,根据相应集 合再查询数据。 

1.查询所有数据

<span style="font-size: 16px;">命令:<br/>db.集合名.find() </span>
<span style="font-size: 16px;">指定对哪个数据库操作<br/>	> use company<br/>	switched to db company<br/>查询指定数据库后里面的所有集合<br/>	> show collections<br/>emp<br/>查询所有数据,一共12条数据:<br/>	> db.emp.find()<br/><br/>{ "_id" : ObjectId("5f9c1c5b5df291fa8194b91b"), "empno" : 100, "ename" : "admin", "sex" : "男", "age" : 20, "salary" : 800, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c1dfc5df291fa8194b91c"), "empno" : 101, "ename" : "张三", "sex" : "女", "age" : 30, "salary" : 2500, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c20945df291fa8194b91d"), "empno" : 102, "ename" : "张良", "sex" : "男", "age" : 25, "salary" : 3000, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c21055df291fa8194b91e"), "empno" : 103, "ename" : "李明", "sex" : "女", "age" : 30, "salary" : 1800, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c215f5df291fa8194b91f"), "empno" : 104, "ename" : "李菲菲", "sex" : "女", "age" : 28, "salary" : 4200, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c219b5df291fa8194b921"), "empno" : 106, "ename" : "李四", "sex" : "男", "age" : 34, "salary" : 12000, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c21a75df291fa8194b922"), "empno" : 106, "ename" : "李四", "sex" : "男", "age" : 34, "salary" : 12000, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c21d85df291fa8194b923"), "empno" : 107, "ename" : "王三", "sex" : "女", "age" : 27, "salary" : 5000, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c22185df291fa8194b924"), "empno" : 108, "ename" : "李元芳", "sex" : "男", "age" : 33, "salary" : 10000, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c227d5df291fa8194b926"), "empno" : 110, "ename" : "刘静", "sex" : "女", "age" : 25, "salary" : 3500, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c371b5df291fa8194b927"), "empno" : 105, "ename" : "张四", "sex" : "男", "age" : 32, "salary" : 8000, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c376a29491ade8d9d3e79"), "empno" : 109, "ename" : "李元静", "sex" : "女", "age" : 32, "salary" : 1600, "deptno" : 30 }<br/></span>

2.去掉集合中重复的数据

<span style="font-size: 16px;">命令:<br/>> db.集合名.distinct("ename")<br/></span>
<span style="font-size: 16px;">> db.emp.distinct("ename")<br/><br/>[<br/>        "admin",<br/>        "刘静",<br/>        "张三",<br/>        "张四",<br/>        "张良",<br/>        "李元芳",<br/>        "李元静",<br/>        "李四",<br/>        "李明",<br/>        "李菲菲",<br/>        "王三"<br/>]<br/></span>
  • 上面的结果“李四”重复被去掉了

3. 查询年龄等于25的数据

  • 这里的“age”可以不加“ ”,直接写成{age:25}

<span style="font-size: 16px;">> db.emp.find({"age":25})<br/><br/>{ "_id" : ObjectId("5f9c20945df291fa8194b91d"), "empno" : 102, "ename" : "张良", "sex" : "男", "age" : 25, "salary" : 3000, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c227d5df291fa8194b926"), "empno" : 110, "ename" : "刘静", "sex" : "女", "age" : 25, "salary" : 3500, "deptno" : 10 }<br/></span>

4. 查询ename=“李元芳“的数据

<span style="font-size: 16px;">> db.emp.find({"ename":"李元芳"})<br/><br/>{ "_id" : ObjectId("5f9c22185df291fa8194b924"), "empno" : 108, "ename" : "李元芳", "sex" : "男", "age" : 35, "salary" : 8000, "deptno" : 30 }<br/></span>

5. 查询age>30岁的员工数据

<span style="font-size: 16px;">> db.emp.find({"age":{$gt:30}})<br/><br/>{ "_id" : ObjectId("5f9c21855df291fa8194b920"), "empno" : 105, "ename" : "张四", "sex" : "男", "age" : 32, "salary" : 8000, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c219b5df291fa8194b921"), "empno" : 106, "ename" : "李四", "sex" : "男", "age" : 35, "salary" : 12000, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c21a75df291fa8194b922"), "empno" : 106, "ename" : "李四", "sex" : "男", "age" : 35, "salary" : 12000, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c22185df291fa8194b924"), "empno" : 108, "ename" : "李元芳", "sex" : "男", "age" : 35, "salary" : 8000, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c22445df291fa8194b925"), "empno" : 109, "ename" : "李元静", "sex" : "女", "age" : 35, "salary" : 15000, "deptno" : 36 }<br/></span>

6. 查询agef11685adcb499d945307587b9a53abe5=30的员工数据

<span style="font-size: 16px;">> db.emp.find({"age":{$gte:30}})<br/><br/>{ "_id" : ObjectId("5f9c1dfc5df291fa8194b91c"), "empno" : 101, "ename" : "张三", "sex" : "女", "age" : 30, "salary" : 2500, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c21055df291fa8194b91e"), "empno" : 103, "ename" : "李明", "sex" : "女", "age" : 30, "salary" : 1800, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c21855df291fa8194b920"), "empno" : 105, "ename" : "张四", "sex" : "男", "age" : 32, "salary" : 8000, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c219b5df291fa8194b921"), "empno" : 106, "ename" : "李四", "sex" : "男", "age" : 35, "salary" : 12000, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c21a75df291fa8194b922"), "empno" : 106, "ename" : "李四", "sex" : "男", "age" : 35, "salary" : 12000, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c22185df291fa8194b924"), "empno" : 108, "ename" : "李元芳", "sex" : "男", "age" : 35, "salary" : 8000, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c22445df291fa8194b925"), "empno" : 109, "ename" : "李元静", "sex" : "女", "age" : 35, "salary" : 15000, "deptno" : 36 }<br/></span>

8. 查询age04365d9a12609ea0854fea8782e456a7=25并且age39b458e216eeeaa0057cdec621831af4=30的员工姓名、年龄和薪资

<span style="font-size: 16px;">> db.emp.find({"age":{$gte:30}},{"ename":1,"age":1,"salary":1})<br/><br/>{ "_id" : ObjectId("5f9c1dfc5df291fa8194b91c"), "ename" : "张三", "age" : 30, "salary" : 2500 }<br/>{ "_id" : ObjectId("5f9c21055df291fa8194b91e"), "ename" : "李明", "age" : 30, "salary" : 1800 }<br/>{ "_id" : ObjectId("5f9c21855df291fa8194b920"), "ename" : "张四", "age" : 32, "salary" : 8000 }<br/>{ "_id" : ObjectId("5f9c219b5df291fa8194b921"), "ename" : "李四", "age" : 35, "salary" : 12000 }<br/>{ "_id" : ObjectId("5f9c21a75df291fa8194b922"), "ename" : "李四", "age" : 35, "salary" : 12000 }<br/>{ "_id" : ObjectId("5f9c22185df291fa8194b924"), "ename" : "李元芳", "age" : 35, "salary" : 8000 }<br/>{ "_id" : ObjectId("5f9c22445df291fa8194b925"), "ename" : "李元静", "age" : 35, "salary" : 15000 }<br/></span>

14. 排序

  • 按照年龄升序排列

<span style="font-size: 16px;">> db.emp.find().sort({"age":1})<br/><br/>{ "_id" : ObjectId("5f9c1c5b5df291fa8194b91b"), "empno" : 100, "ename" : "admin", "sex" : "男", "age" : 20, "salary" : 800, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c20945df291fa8194b91d"), "empno" : 102, "ename" : "张良", "sex" : "男", "age" : 25, "salary" : 3000, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c227d5df291fa8194b926"), "empno" : 110, "ename" : "刘静", "sex" : "女", "age" : 25, "salary" : 3500, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c21d85df291fa8194b923"), "empno" : 107, "ename" : "王三", "sex" : "女", "age" : 27, "salary" : 5000, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c215f5df291fa8194b91f"), "empno" : 104, "ename" : "李菲菲", "sex" : "女", "age" : 28, "salary" : 4200, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c1dfc5df291fa8194b91c"), "empno" : 101, "ename" : "张三", "sex" : "女", "age" : 30, "salary" : 2500, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c21055df291fa8194b91e"), "empno" : 103, "ename" : "李明", "sex" : "女", "age" : 30, "salary" : 1800, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c21855df291fa8194b920"), "empno" : 105, "ename" : "张四", "sex" : "男", "age" : 32, "salary" : 8000, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c219b5df291fa8194b921"), "empno" : 106, "ename" : "李四", "sex" : "男", "age" : 35, "salary" : 12000, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c21a75df291fa8194b922"), "empno" : 106, "ename" : "李四", "sex" : "男", "age" : 35, "salary" : 12000, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c22185df291fa8194b924"), "empno" : 108, "ename" : "李元芳", "sex" : "男", "age" : 35, "salary" : 8000, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c22445df291fa8194b925"), "empno" : 109, "ename" : "李元静", "sex" : "女", "age" : 35, "salary" : 15000, "deptno" : 36 }<br/></span>
  • 按照薪资降序排列

<span style="font-size: 16px;">> db.emp.find().sort({salary:-1})<br/><br/>{ "_id" : ObjectId("5f9c22445df291fa8194b925"), "empno" : 109, "ename" : "李元静", "sex" : "女", "age" : 35, "salary" : 15000, "deptno" : 36 }<br/>{ "_id" : ObjectId("5f9c219b5df291fa8194b921"), "empno" : 106, "ename" : "李四", "sex" : "男", "age" : 35, "salary" : 12000, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c21a75df291fa8194b922"), "empno" : 106, "ename" : "李四", "sex" : "男", "age" : 35, "salary" : 12000, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c21855df291fa8194b920"), "empno" : 105, "ename" : "张四", "sex" : "男", "age" : 32, "salary" : 8000, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c22185df291fa8194b924"), "empno" : 108, "ename" : "李元芳", "sex" : "男", "age" : 35, "salary" : 8000, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c21d85df291fa8194b923"), "empno" : 107, "ename" : "王三", "sex" : "女", "age" : 27, "salary" : 5000, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c215f5df291fa8194b91f"), "empno" : 104, "ename" : "李菲菲", "sex" : "女", "age" : 28, "salary" : 4200, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c227d5df291fa8194b926"), "empno" : 110, "ename" : "刘静", "sex" : "女", "age" : 25, "salary" : 3500, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c20945df291fa8194b91d"), "empno" : 102, "ename" : "张良", "sex" : "男", "age" : 25, "salary" : 3000, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c1dfc5df291fa8194b91c"), "empno" : 101, "ename" : "张三", "sex" : "女", "age" : 30, "salary" : 2500, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c21055df291fa8194b91e"), "empno" : 103, "ename" : "李明", "sex" : "女", "age" : 30, "salary" : 1800, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c1c5b5df291fa8194b91b"), "empno" : 100, "ename" : "admin", "sex" : "男", "age" : 20, "salary" : 800, "deptno" : 10 }<br/></span>

15. 查询ename=admin且age=20的员工数据

<span style="font-size: 16px;">> db.emp.find({ename:"admin",age:20})<br/><br/>{ "_id" : ObjectId("5f9c1c5b5df291fa8194b91b"), "empno" : 100, "ename" : "admin", "sex" : "男", "age" : 20, "salary" : 800, "deptno" : 10 }<br/></span>

16. 查询前5条数据

<span style="font-size: 16px;">> db.emp.find().limit(5)<br/><br/>{ "_id" : ObjectId("5f9c1c5b5df291fa8194b91b"), "empno" : 100, "ename" : "admin", "sex" : "男", "age" : 20, "salary" : 800, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c1dfc5df291fa8194b91c"), "empno" : 101, "ename" : "张三", "sex" : "女", "age" : 30, "salary" : 2500, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c20945df291fa8194b91d"), "empno" : 102, "ename" : "张良", "sex" : "男", "age" : 25, "salary" : 3000, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c21055df291fa8194b91e"), "empno" : 103, "ename" : "李明", "sex" : "女", "age" : 30, "salary" : 1800, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c215f5df291fa8194b91f"), "empno" : 104, "ename" : "李菲菲", "sex" : "女", "age" : 28, "salary" : 4200, "deptno" : 20 }<br/></span>

17. 查询10条以后的数据

  • 这里一共12条数据,查询10条以后的数据,结果是两条数据。

<span style="font-size: 16px;">> db.emp.find().skip(10)<br/><br/>{ "_id" : ObjectId("5f9c22445df291fa8194b925"), "empno" : 109, "ename" : "李元静", "sex" : "女", "age" : 35, "salary" : 15000, "deptno" : 36 }<br/>{ "_id" : ObjectId("5f9c227d5df291fa8194b926"), "empno" : 110, "ename" : "刘静", "sex" : "女", "age" : 25, "salary" : 3500, "deptno" : 10 }<br/></span>

18. 查询集合中的总数据

  • 一共12条数据

<span style="font-size: 16px;">> db.emp.find().count()<br/><br/>12<br/></span>
  • 查询salary>=5000的员工数量

<span style="font-size: 16px;">> db.emp.find({salary:{$gte:5000}}).count()<br/><br/>6<br/></span>

验证(查询查询salary>=5000的员工数据,一共是6条。)

<span style="font-size: 16px;">> db.emp.find({salary:{$gte:5000}})<br/><br/>{ "_id" : ObjectId("5f9c21855df291fa8194b920"), "empno" : 105, "ename" : "张四", "sex" : "男", "age" : 32, "salary" : 8000, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c219b5df291fa8194b921"), "empno" : 106, "ename" : "李四", "sex" : "男", "age" : 35, "salary" : 12000, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c21a75df291fa8194b922"), "empno" : 106, "ename" : "李四", "sex" : "男", "age" : 35, "salary" : 12000, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c21d85df291fa8194b923"), "empno" : 107, "ename" : "王三", "sex" : "女", "age" : 27, "salary" : 5000, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c22185df291fa8194b924"), "empno" : 108, "ename" : "李元芳", "sex" : "男", "age" : 35, "salary" : 8000, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c22445df291fa8194b925"), "empno" : 109, "ename" : "李元静", "sex" : "女", "age" : 35, "salary" : 15000, "deptno" : 36 }<br/></span>

19. 分页查询

  • 按照每页显示5条数据查询,一共12条数据,就要查询3页

<span style="font-size: 16px;">第一页:<br/>> db.emp.find().skip(0).limit(5)<br/><br/>{ "_id" : ObjectId("5f9c1c5b5df291fa8194b91b"), "empno" : 100, "ename" : "admin", "sex" : "男", "age" : 20, "salary" : 800, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c1dfc5df291fa8194b91c"), "empno" : 101, "ename" : "张三", "sex" : "女", "age" : 30, "salary" : 2500, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c20945df291fa8194b91d"), "empno" : 102, "ename" : "张良", "sex" : "男", "age" : 25, "salary" : 3000, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c21055df291fa8194b91e"), "empno" : 103, "ename" : "李明", "sex" : "女", "age" : 30, "salary" : 1800, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c215f5df291fa8194b91f"), "empno" : 104, "ename" : "李菲菲", "sex" : "女", "age" : 28, "salary" : 4200, "deptno" : 20 }<br/><br/>第二页:<br/>> db.emp.find().skip(5).limit(5)<br/><br/>{ "_id" : ObjectId("5f9c21855df291fa8194b920"), "empno" : 105, "ename" : "张四", "sex" : "男", "age" : 32, "salary" : 8000, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c219b5df291fa8194b921"), "empno" : 106, "ename" : "李四", "sex" : "男", "age" : 35, "salary" : 12000, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c21a75df291fa8194b922"), "empno" : 106, "ename" : "李四", "sex" : "男", "age" : 35, "salary" : 12000, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c21d85df291fa8194b923"), "empno" : 107, "ename" : "王三", "sex" : "女", "age" : 27, "salary" : 5000, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c22185df291fa8194b924"), "empno" : 108, "ename" : "李元芳", "sex" : "男", "age" : 35, "salary" : 8000, "deptno" : 30 }<br/><br/>第三页:<br/>> db.emp.find().skip(10).limit(5)<br/><br/>{ "_id" : ObjectId("5f9c22445df291fa8194b925"), "empno" : 109, "ename" : "李元静", "sex" : "女", "age" : 35, "salary" : 15000, "deptno" : 36 }<br/>{ "_id" : ObjectId("5f9c227d5df291fa8194b926"), "empno" : 110, "ename" : "刘静", "sex" : "女", "age" : 25, "salary" : 3500, "deptno" : 10 }<br/></span>
  • skip的值=(页数-1)* 每页显示数量

  • skip(N):表示要查询第N条数据后的数据

20.关键字or的查询方式

  • 查询年龄是30或者年龄是35的员工数据(注意写法)

<span style="font-size: 16px;">> db.emp.find({$or:[{age:30},{age:35}]})<br/><br/>{ "_id" : ObjectId("5f9c1dfc5df291fa8194b91c"), "empno" : 101, "ename" : "张三", "sex" : "女", "age" : 30, "salary" : 2500, "deptno" : 20 }<br/>{ "_id" : ObjectId("5f9c21055df291fa8194b91e"), "empno" : 103, "ename" : "李明", "sex" : "女", "age" : 30, "salary" : 1800, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c219b5df291fa8194b921"), "empno" : 106, "ename" : "李四", "sex" : "男", "age" : 35, "salary" : 12000, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c21a75df291fa8194b922"), "empno" : 106, "ename" : "李四", "sex" : "男", "age" : 35, "salary" : 12000, "deptno" : 10 }<br/>{ "_id" : ObjectId("5f9c22185df291fa8194b924"), "empno" : 108, "ename" : "李元芳", "sex" : "男", "age" : 35, "salary" : 8000, "deptno" : 30 }<br/>{ "_id" : ObjectId("5f9c22445df291fa8194b925"), "empno" : 109, "ename" : "李元静", "sex" : "女", "age" : 35, "salary" : 15000, "deptno" : 36 }<br/></span>

21. 查询第一条数据

<span style="font-size: 16px;">> db.emp.findOne()<br/>{<br/>        "_id" : ObjectId("5f9c1c5b5df291fa8194b91b"),<br/>        "empno" : 100,<br/>        "ename" : "admin",<br/>        "sex" : "男",<br/>        "age" : 20,<br/>        "salary" : 800,<br/>        "deptno" : 10<br/>}<br/></span>


<span style="font-size: 16px;">> db.emp.find().limit(1)<br/><br/>{ "_id" : ObjectId("5f9c1c5b5df291fa8194b91b"), "empno" : 100, "ename" : "admin", "sex" : "男", "age" : 20, "salary" : 800, "deptno" : 10 }<br/></span>

22. 查询当前表所在的数据库

<span style="font-size: 16px;">> db.emp.getDB()<br/><br/>company<br/></span>

六、更新数据

  • 更新数据一定要有条件限制,并且需要加上$set否则会全部修改

  • 第一个参数是条件,后面的参数是要修改的数据或者是其他操作,比如批量操作

1. 更新员工李元静的年龄为32岁

<span style="font-size: 16px;">> db.emp.update({ename:"李元静"},{$set:{age:32}})<br/><br/>WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })<br/></span>

验证(查询姓名是李元静的员工数据)

<span style="font-size: 16px;">> db.emp.find({ename:"李元静"})<br/><br/>{ "_id" : ObjectId("5f9c376a29491ade8d9d3e79"), "empno" : 109, "ename" : "李元静", "sex" : "女", "age" : 32, "salary" : 15000, "deptno" : 36 }<br/></span>

2. 更新员工李元静的薪资为1600并且所在部门修改为30

<span style="font-size: 16px;">> db.emp.update({ename:"李元静"},{$set:{salary:1600,deptno:30}})<br/><br/>WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })<br/></span>
  • 验证(查询姓名是李元静的员工数据)

<span style="font-size: 16px;">> db.emp.find({ename:"李元静"})<br/><br/>{ "_id" : ObjectId("5f9c376a29491ade8d9d3e79"), "empno" : 109, "ename" : "李元静", "sex" : "女", "age" : 32, "salary" : 1600, "deptno" : 30 }<br/></span>

3. 批量更新数据

  • 把年龄是35岁的更新为34岁

  • 设置第三个参数:{multi:true}

<span style="font-size: 16px;">> db.emp.update({age:35},{$set:{age:34}},{multi:true})<br/><br/>WriteResult({ "nMatched" : 3, "nUpserted" : 0, "nModified" : 3 })<br/></span>
  • 通过db.emp.find()验证所有数据没有年龄为35的员工

4. $inc使用

  • $inc将一个字段的值增加或者减少

  • 把李元芳的年龄减少1岁,同时薪资加2000

<span style="font-size: 16px;">> db.emp.update({ename:"李元芳"},{$inc:{age:-1,salary:2000}})<br/><br/>WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })<br/></span>
  • 验证

<span style="font-size: 16px;">> db.emp.find({ename:"李元芳"})<br/><br/>{ "_id" : ObjectId("5f9c22185df291fa8194b924"), "empno" : 108, "ename" : "李元芳", "sex" : "男", "age" : 33, "salary" : 10000, "deptno" : 30 }<br/></span>

七、删除操作

1. 删除指定条件的数据

<span style="font-size: 16px;">db.emp.remove({ename:"李元芳"})<br/></span>

2. 删除所有数据

<span style="font-size: 16px;">db.emp.remove({})<br/></span>

3. 删除集合

<span style="font-size: 16px;">db.emp.drop()<br/></span>

4.删除数据库

<span style="font-size: 16px;">db.dropDatabase()<br/></span>

5. 温馨提示

  • 对数据库数据执行删除操作时,记得加条件!

八、MongoDB数据库索引

  • MongoDB数据库索引是指对数据库集合中的一列或者多列进行排序的一种结构,可以大大缩减我们在使用数据库查询时候的时间,其用法和关系型数据库一样。

1. 模拟批量插入数据

  • 在使用数据库前,我们创建一个com数据库和users集合,模拟60万条数据

  • PS:插入60万条数据大概需要5分钟

<span style="font-size: 16px;">> use com<br/>switched to db com<br/>> for(var i=0;i<600000;i++){<br/>... db.users.insert({userNo:i,userName:"张三"+i,age:28,phone:"13000"+i})<br/>... }<br/>WriteResult({ "nInserted" : 1 })<br/></span>
  • 验证数据

<span style="font-size: 16px;">> db.users.find().count()<br/>600000<br/></span>

2.无索引查询所耗费时间

<span style="font-size: 16px;">命令: <br/>db.users.find({userNo:599999}).explain("executionStats")<br/></span>
<span style="font-size: 16px;">> db.users.find({userNo:599999}).explain("executionStats")<br/>{<br/>        "queryPlanner" : {<br/>                "plannerVersion" : 1,<br/>                "namespace" : "com.users",<br/>                "indexFilterSet" : false,<br/>                "parsedQuery" : {<br/>                        "userNo" : {<br/>                                "$eq" : 599999<br/>                        }<br/>                },<br/>                "winningPlan" : {<br/>                        "stage" : "COLLSCAN",<br/>                        "filter" : {<br/>                                "userNo" : {<br/>                                        "$eq" : 599999<br/>                                }<br/>                        },<br/>                        "direction" : "forward"<br/>                },<br/>                "rejectedPlans" : [ ]<br/>        },<br/>        "executionStats" : {<br/>                "executionSuccess" : true,<br/>                "nReturned" : 1,<br/>                "executionTimeMillis" : 254,<br/>                "totalKeysExamined" : 0,<br/>                "totalDocsExamined" : 600000,<br/>                "executionStages" : {<br/>                        "stage" : "COLLSCAN",<br/>                        "filter" : {<br/>                                "userNo" : {<br/>                                        "$eq" : 599999<br/>                                }<br/>                        },<br/>                        "nReturned" : 1,<br/>                        "executionTimeMillisEstimate" : 3,<br/>                        "works" : 600002,<br/>                        "advanced" : 1,<br/>                        "needTime" : 600000,<br/>                        "needYield" : 0,<br/>                        "saveState" : 600,<br/>                        "restoreState" : 600,<br/>                        "isEOF" : 1,<br/>                        "direction" : "forward",<br/>                        "docsExamined" : 600000<br/>                }<br/>        },<br/>        "serverInfo" : {<br/>                "host" : "thinkPadE580",<br/>                "port" : 27017,<br/>                "version" : "4.4.2-rc0",<br/>                "gitVersion" : "b5fafa1f87dda6f8773c5a8a1a5e7776d4d94da7"<br/>        },<br/>        "ok" : 1<br/>}<br/></span>
  • 通过"executionTimeMillis" : 254可以知道查询所耗费时间为254毫秒,当然这与计算机配置性能有关。

3. 创建索引

  • 为userNo创建索引

<span style="font-size: 16px;">命令:<br/>	db.users.ensureIndex({userNo:1})<br/></span>
<span style="font-size: 16px;">> db.users.ensureIndex({userNo:1})<br/>{<br/>        "createdCollectionAutomatically" : false,<br/>        "numIndexesBefore" : 1,<br/>        "numIndexesAfter" : 2,<br/>        "ok" : 1<br/>}<br/></span>

4. 查询索引

<span style="font-size: 16px;">命令:<br/>	db.users.getIndexes()<br/></span>
<span style="font-size: 16px;">> db.users.getIndexes()<br/>[<br/>        {<br/>                "v" : 2,<br/>                "key" : {<br/>                        "_id" : 1<br/>                },<br/>                "name" : "_id_"<br/>        },<br/>        {<br/>                "v" : 2,<br/>                "key" : {<br/>                        "userNo" : 1<br/>                },<br/>                "name" : "userNo_1"<br/>        }<br/>]<br/></span>
  • _id为集合默认id索引,userNo是自定义索引

5. 使用索引查询所耗费时间

<span style="font-size: 16px;">> db.users.find({userNo:599999}).explain("executionStats")<br/>{<br/>        "queryPlanner" : {<br/>                "plannerVersion" : 1,<br/>                "namespace" : "com.users",<br/>                "indexFilterSet" : false,<br/>                "parsedQuery" : {<br/>                        "userNo" : {<br/>                                "$eq" : 599999<br/>                        }<br/>                },<br/>                "winningPlan" : {<br/>                        "stage" : "FETCH",<br/>                        "inputStage" : {<br/>                                "stage" : "IXSCAN",<br/>                                "keyPattern" : {<br/>                                        "userNo" : 1<br/>                                },<br/>                                "indexName" : "userNo_1",<br/>                                "isMultiKey" : false,<br/>                                "multiKeyPaths" : {<br/>                                        "userNo" : [ ]<br/>                                },<br/>                                "isUnique" : false,<br/>                                "isSparse" : false,<br/>                                "isPartial" : false,<br/>                                "indexVersion" : 2,<br/>                                "direction" : "forward",<br/>                                "indexBounds" : {<br/>                                        "userNo" : [<br/>                                                "[599999.0, 599999.0]"<br/>                                        ]<br/>                                }<br/>                        }<br/>                },<br/>                "rejectedPlans" : [ ]<br/>        },<br/>        "executionStats" : {<br/>                "executionSuccess" : true,<br/>                "nReturned" : 1,<br/>                "executionTimeMillis" : 84,<br/>                "totalKeysExamined" : 1,<br/>                "totalDocsExamined" : 1,<br/>                "executionStages" : {<br/>                        "stage" : "FETCH",<br/>                        "nReturned" : 1,<br/>                        "executionTimeMillisEstimate" : 0,<br/>                        "works" : 2,<br/>                        "advanced" : 1,<br/>                        "needTime" : 0,<br/>                        "needYield" : 0,<br/>                        "saveState" : 0,<br/>                        "restoreState" : 0,<br/>                        "isEOF" : 1,<br/>                        "docsExamined" : 1,<br/>                        "alreadyHasObj" : 0,<br/>                        "inputStage" : {<br/>                                "stage" : "IXSCAN",<br/>                                "nReturned" : 1,<br/>                                "executionTimeMillisEstimate" : 0,<br/>                                "works" : 2,<br/>                                "advanced" : 1,<br/>                                "needTime" : 0,<br/>                                "needYield" : 0,<br/>                                "saveState" : 0,<br/>                                "restoreState" : 0,<br/>                                "isEOF" : 1,<br/>                                "keyPattern" : {<br/>                                        "userNo" : 1<br/>                                },<br/>                                "indexName" : "userNo_1",<br/>                                "isMultiKey" : false,<br/>                                "multiKeyPaths" : {<br/>                                        "userNo" : [ ]<br/>                                },<br/>                                "isUnique" : false,<br/>                                "isSparse" : false,<br/>                                "isPartial" : false,<br/>                                "indexVersion" : 2,<br/>                                "direction" : "forward",<br/>                                "indexBounds" : {<br/>                                        "userNo" : [<br/>                                                "[599999.0, 599999.0]"<br/>                                        ]<br/>                                },<br/>                                "keysExamined" : 1,<br/>                                "seeks" : 1,<br/>                                "dupsTested" : 0,<br/>                                "dupsDropped" : 0<br/>                        }<br/>                }<br/>        },<br/>        "serverInfo" : {<br/>                "host" : "thinkPadE580",<br/>                "port" : 27017,<br/>                "version" : "4.4.2-rc0",<br/>                "gitVersion" : "b5fafa1f87dda6f8773c5a8a1a5e7776d4d94da7"<br/>        },<br/>        "ok" : 1<br/>}<br/></span>
  • 用索引查询userNo的值,可以通过"executionTimeMillisEstimate" : 0知道,所耗费的时间为0毫秒,大大缩短了查询速度

6. 删除索引

<span style="font-size: 16px;">命令:<br/>	 db.users.dropIndex({userNo:1})<br/></span>

验证

<span style="font-size: 16px;">> db.users.dropIndex({userNo:1})<br/>{ "nIndexesWas" : 2, "ok" : 1 }<br/></span>
  • 可以看出,我们自定义的索引已经删除

7. 复合索引

  • 当要对多个字段进行经常性大量查询的时候,我们可以设置复合索引

<span style="font-size: 16px;">> db.users.ensureIndex({userNo:1,userName:1})<br/>{<br/>        "createdCollectionAutomatically" : false,<br/>        "numIndexesBefore" : 1,<br/>        "numIndexesAfter" : 2,<br/>        "ok" : 1<br/>}<br/></span>
  • 查看复合索引

<span style="font-size: 16px;">> db.users.getIndexes()<br/>[<br/>        {<br/>                "v" : 2,<br/>                "key" : {<br/>                        "_id" : 1<br/>                },<br/>                "name" : "_id_"<br/>        },<br/>        {<br/>                "v" : 2,<br/>                "key" : {<br/>                        "userNo" : 1,<br/>                        "userName" : 1<br/>                },<br/>                "name" : "userNo_1_userName_1"<br/>        }<br/>]<br/></span>
  • userNo和userName是我们自定义的索引

  • 查询userName:”张三599999”所耗费时间

<span style="font-size: 16px;">> db.users.find({userNo:599999,userName:"张三599999"}).explain("executionStats")))<br/>{<br/>        "queryPlanner" : {<br/>                "plannerVersion" : 1,<br/>                "namespace" : "com.users",<br/>                "indexFilterSet" : false,<br/>                "parsedQuery" : {<br/>                        "$and" : [<br/>                                {<br/>                                        "userName" : {<br/>                                                "$eq" : "张三599999"<br/>                                        }<br/>                                },<br/>                                {<br/>                                        "userNo" : {<br/>                                                "$eq" : 599999<br/>                                        }<br/>                                }<br/>                        ]<br/>                },<br/>                "winningPlan" : {<br/>                        "stage" : "FETCH",<br/>                        "inputStage" : {<br/>                                "stage" : "IXSCAN",<br/>                                "keyPattern" : {<br/>                                        "userNo" : 1,<br/>                                        "userName" : 1<br/>                                },<br/>                                "indexName" : "userNo_1_userName_1",<br/>                                "isMultiKey" : false,<br/>                                "multiKeyPaths" : {<br/>                                        "userNo" : [ ],<br/>                                        "userName" : [ ]<br/>                                },<br/>                                "isUnique" : false,<br/>                                "isSparse" : false,<br/>                                "isPartial" : false,<br/>                                "indexVersion" : 2,<br/>                                "direction" : "forward",<br/>                                "indexBounds" : {<br/>                                        "userNo" : [<br/>                                                "[599999.0, 599999.0]"<br/>                                        ],<br/>                                        "userName" : [<br/>                                                "[\"张三599999\", \"张三599999\"]"<br/>                                        ]<br/>                                }<br/>                        }<br/>                },<br/>                "rejectedPlans" : [ ]<br/>        },<br/>        "executionStats" : {<br/>                "executionSuccess" : true,<br/>                "nReturned" : 1,<br/>                "executionTimeMillis" : 2,<br/>                "totalKeysExamined" : 1,<br/>                "totalDocsExamined" : 1,<br/>                "executionStages" : {<br/>                        "stage" : "FETCH",<br/>                        "nReturned" : 1,<br/>                        "executionTimeMillisEstimate" : 0,<br/>                        "works" : 2,<br/>                        "advanced" : 1,<br/>                        "needTime" : 0,<br/>                        "needYield" : 0,<br/>                        "saveState" : 0,<br/>                        "restoreState" : 0,<br/>                        "isEOF" : 1,<br/>                        "docsExamined" : 1,<br/>                        "alreadyHasObj" : 0,<br/>                        "inputStage" : {<br/>                                "stage" : "IXSCAN",<br/>                                "nReturned" : 1,<br/>                                "executionTimeMillisEstimate" : 0,<br/>                                "works" : 2,<br/>                                "advanced" : 1,<br/>                                "needTime" : 0,<br/>                                "needYield" : 0,<br/>                                "saveState" : 0,<br/>                                "restoreState" : 0,<br/>                                "isEOF" : 1,<br/>                                "keyPattern" : {<br/>                                        "userNo" : 1,<br/>                                        "userName" : 1<br/>                                },<br/>                                "indexName" : "userNo_1_userName_1",<br/>                                "isMultiKey" : false,<br/>                                "multiKeyPaths" : {<br/>                                        "userNo" : [ ],<br/>                                        "userName" : [ ]<br/>                                },<br/>                                "isUnique" : false,<br/>                                "isSparse" : false,<br/>                                "isPartial" : false,<br/>                                "indexVersion" : 2,<br/>                                "direction" : "forward",<br/>                                "indexBounds" : {<br/>                                        "userNo" : [<br/>                                                "[599999.0, 599999.0]"<br/>                                        ],<br/>                                        "userName" : [<br/>                                                "[\"张三599999\", \"张三599999\"]"<br/>                                        ]<br/>                                },<br/>                                "keysExamined" : 1,<br/>                                "seeks" : 1,<br/>                                "dupsTested" : 0,<br/>                                "dupsDropped" : 0<br/>                        }<br/>                }<br/>        },<br/>        "serverInfo" : {<br/>                "host" : "thinkPadE580",<br/>                "port" : 27017,<br/>                "version" : "4.4.2-rc0",<br/>                "gitVersion" : "b5fafa1f87dda6f8773c5a8a1a5e7776d4d94da7"<br/>        },<br/>        "ok" : 1<br/>}<br/></span>
  • 通过"executionTimeMillis" : 2,可以看出,查询userNo和userName只需要2毫秒

  • 注意:如果在一个集合中,对多个字段设置索引N(N!=1),在使用复合索引查询的时候,要连同第一个索引字段一起查询,如果只单单查询第N个,索引将没有效果。

8.唯一索引

  • 创建唯一索引的条件是,集合中字段的数据不能重复,但在缺省情况下创建是索引均不是唯一索引

  • 由于集合中的age都是一样的值,在给age创建唯一索引的时候会报错

<span style="font-size: 16px;">命令:<br/>	> db.users.ensure({age:1},{unique:true})<br/></span>
  • 为age创建唯一索引,失败

<span style="font-size: 16px;">> db.users.ensure({age:1},{unique:true})<br/>TypeError: db.users.ensure is not a function :<br/>@(shell):1:1<br/></span>

以上是MongoDB 4.X基础教程的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
MongoDB与Oracle:检查性能和可伸缩性MongoDB与Oracle:检查性能和可伸缩性Apr 17, 2025 am 12:04 AM

MongoDB在性能和可扩展性上表现出色,适合高扩展性和灵活性需求;Oracle则在需要严格事务控制和复杂查询时表现优异。1.MongoDB通过分片技术实现高扩展性,适合大规模数据和高并发场景。2.Oracle依赖优化器和并行处理提高性能,适合结构化数据和事务控制需求。

MongoDB与Oracle:了解关键差异MongoDB与Oracle:了解关键差异Apr 16, 2025 am 12:01 AM

MongoDB适合处理大规模非结构化数据,Oracle适用于需要事务一致性的企业级应用。 1.MongoDB提供灵活性和高性能,适合处理用户行为数据。 2.Oracle以稳定性和强大功能着称,适用于金融系统。 3.MongoDB使用文档模型,Oracle使用关系模型。 4.MongoDB适合社交媒体应用,Oracle适合企业级应用。

MongoDB:扩展和绩效注意事项MongoDB:扩展和绩效注意事项Apr 15, 2025 am 12:02 AM

MongoDB在扩展性和性能方面的考虑包括水平扩展、垂直扩展和性能优化。1.水平扩展通过分片技术实现,提高系统容量。2.垂直扩展通过增加硬件资源提升性能。3.性能优化通过合理设计索引和优化查询策略实现。

MongoDB的力量:现代数据管理MongoDB的力量:现代数据管理Apr 13, 2025 am 12:04 AM

MongoDB是一种NoSQL数据库,因其灵活性和可扩展性在现代数据管理中非常重要。它采用文档存储,适合处理大规模、多变的数据,并提供强大的查询和索引能力。

mongodb怎么批量删除mongodb怎么批量删除Apr 12, 2025 am 09:27 AM

MongoDB 中批量删除文档可以使用以下方法:1. $in 操作符指定要删除的文档列表;2. 正则表达式匹配符合条件的文档;3. $exists 操作符删除具有指定字段的文档;4. find() 和 remove() 方法先获取再删除文档。请注意,这些操作无法使用事务,并可能删除所有匹配的文档,因此使用时需谨慎。

mongodb命令怎么设置mongodb命令怎么设置Apr 12, 2025 am 09:24 AM

要设置MongoDB数据库,可以使用命令行(use和db.createCollection())或mongo Shell(mongo、use和db.createCollection())。其他设置选项包括查看数据库(show dbs)、查看集合(show collections)、删除数据库(db.dropDatabase())、删除集合(db.&lt;collection_name&gt;.drop())、插入文档(db.&lt;collecti

怎么部署mongodb集群怎么部署mongodb集群Apr 12, 2025 am 09:21 AM

部署 MongoDB 集群分五步:部署主节点,部署辅助节点,添加辅助节点,配置复制,验证集群。包括安装 MongoDB 软件、创建数据目录、启动 MongoDB 实例、初始化复制集、添加辅助节点、启用副本集功能、配置投票权,并验证集群状态和数据复制。

mongodb应用场景怎么用mongodb应用场景怎么用Apr 12, 2025 am 09:18 AM

MongoDB 广泛应用于以下场景:文档存储:管理用户资料、内容、产品目录等结构化和非结构化数据。实时分析:快速查询和分析日志、监控仪表盘展示等实时数据。社交媒体:管理用户关系图谱、活动流和消息传递。物联网:处理设备监控、数据收集和远程管理等海量时间序列数据。移动应用:作为后端数据库,同步移动设备数据、提供离线存储等。其他领域:电子商务、医疗保健、金融服务和游戏开发等多样化场景。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器