本篇文章给大家带来了关于python的相关知识,其中主要整理了程序设计思想的相关问题,Python是一种面向对象oop(Object Oriented Programming)的脚本语言,编程思想的核心就是理解功能逻辑,下面一起来看一下,希望对大家有帮助。
推荐学习:python视频教程
Python是一种面向对象oop(Object Oriented Programming)的脚本语言。
面向对象是采用基于对象(实体)的概念建立模型,模拟客观世界分析、设计、实现软件的办法。
在面向对象程序设计中,对象包含两个含义,其中一个是数据,另外一个是动作。面向对象的方法把数据和方法组合成一个整体,然后对其进行系统建模。
python编程思想的核心就是理解功能逻辑,如果对解决一个问题的逻辑没有搞清楚,那么你的代码看起来就会非常的紊乱,读起来非常的拗口,所以一旦逻辑清晰,按照模块对功能进行系统编程,那么你的代码设计肯定是漂亮的!!!
1 基本的程序设计模式
任何的程序设计都包含IPO,它们分别代表如下:
I:Input 输入,程序的输入
P:Process 处理,程序的主要逻辑过程
O:Output 输出,程序的输出
因此如果想要通过计算机实现某个功能,那么基本的程序设计模式包含三个部分,如下:
确定IPO:明确需要实现功能的输入和输出,以及主要的实现逻辑过程;
编写程序:将计算求解的逻辑过程通过编程语言进行设计展示;
调试程序:对编写的程序按照逻辑过程进行调试,确保程序按照正确逻辑正确运行。
2 解决复杂问题的有效方法:自顶向下(设计)
2.1 自顶向下-分而治之
如果要实现功能的逻辑比较复杂的时候,就需要对其进行模块化设计,将复杂问题进行分解,转化为多个简单问题,其中简单问题又可以继续分解为更加简单的问题,直到功能逻辑可以通过模块程序设计实现,这也是程序设计的自顶向下特点。总结如下:
- 将一个总问题表达为若干个小问题组成的形式
- 使用同样方法进一步分解小问题
- 直至,小问题可以用计算机简单明了的解决
2.2 举例1:体育竞技分析
2.2.1 程序总体框架
printlnfo() 步骤1:打印程序的介绍性信息
getlnputs() 步骤2:获得程序运行参数:proA, proB, n
simNGames() 步骤3:利用球员A和B的能力值,模拟n局比赛
printSummary() 步骤4:输出球员A和B获胜比赛的场次及概率
2.2.2 程序设计
# 导入python资源包 from random import random # 用户体验模块 def printIntro(): print("这个程序模拟两个选手A和B的某种竞技比赛") print("程序运行需要A和B的能力值(以0到1之间的小数表示)") # 获得A和B的能力值与场次模块 def getIntputs(): a = eval(input("请输入A的能力值(0-1):")) b = eval(input("请输入B的能力值(0-1):")) n = eval(input("模拟比赛的场次:")) return a, b, n # 模拟n局比赛模块 def simNGames(n, probA, probB): winsA, winsB = 0, 0 for i in range(n): scoreA, scoreB = simOneGame(probA, probB) if scoreA > scoreB: winsA += 1 else: winsB += 1 return winsA, winsB # 判断比赛结束条件 def gameOver(a, b): return a == 15 or b == 15 # 模拟n次单局比赛=模拟n局比赛 def simOneGame(probA, probB): scoreA, scoreB = 0, 0 serving = "A" while not gameOver(scoreA, scoreB): if serving == "A": if random() < probA: scoreA += 1 else: serving = "B" else: if random() < probB: scoreB += 1 else: serving = "A" return scoreA, scoreB # 打印结果模块 def printSummary(winsA, winsB): n = winsA + winsB print("竞技分析开始,共模拟{}场比赛".format(n)) print("选手A获胜{}场比赛,占比{:0.1%}".format(winsA, winsA / n)) print("选手B获胜{}场比赛,占比{:0.1%}".format(winsB, winsB / n)) def main(): printIntro() probA, probB, n = getIntputs() # 获得用户A、B能力值与比赛场次N winsA, winsB = simNGames(n, probA, probB) # 获得A与B的场次 printSummary(winsA, winsB) # 返回A与B的结果 main()
2.2.3 测试结果
2.3 举例2:的斐波那契数列
自顶向下的方式其实就是使用递归来求解子问题,最终解只需要调用递归式,子问题逐步往下层递归的求解。
程序设计:
cache = {} def fib(number): if number in cache: return cache[number] if number == 0 or number == 1: return 1 else: cache[number] = fib(number - 1) + fib(number - 2) return cache[number] if __name__ == '__main__': print(fib(35))
运行结果:
14930352 >>>
理解自顶向下的设计思维:分而治之
3 逐步组建复杂系统的有效测试方法:自底向上(执行)
3.1 自底向上-模块化集成
自底向上(执行)就是一种逐步组建复杂系统的有效测试方法。首先将需要解决的问题分为各个三元进行测试,接着按照自顶向下相反的路径进行操作,然后对各个单元进行逐步组装,直至系统各部分以组装的思路都经过测试和验证。
理解自底向上的执行思维:模块化集成
自底向上分析思想:
- 任何时候栈中符号串和剩余符号串组成一个句型,当句柄出现在栈顶符号串中时,就用该句柄进行归约,这样一直归约到输入串只剩结束符、栈中符号只剩下开始符号,此时认为输入符号串是文法的句子,否则报错。
自底向上是⼀种求解动态规划问题的方法,它不使用递归式,而是直接使用循环来计算所有可能的结果,往上层逐渐累加子问题的解。在求解子问题的最优解的同时,也相当于是在求解整个问题的最优解。其中最难的部分是找到求解最终问题的递归关系式,或者说状态转移方程。
3.2 举例:0-1背包问题
3.2.1 问题描述
你现在想买⼀大堆算法书,有一个容量为 V 的背包,这个商店⼀共有 n 个商品。问题在于,你最多只能拿 W kg 的东西,其中 wi 和 vi 分别表示第 i 个商品的重量和价值。最终的目标就是在能拿的下的情况下,获得最大价值,求解哪些物品可以放进背包。
对于每⼀个商品你有两个选择:拿或者不拿。
3.2.2 自底向上分析
⾸先要做的就是要找到“子问题”是什么。通过分析发现:每次背包新装进⼀个物品就可以把剩余的承重能力作为⼀个新的背包来求解,⼀直递推到承重为0的背包问题。
用 m[i,w] 表示偷到商品的总价值,其中 i 表示⼀共多少个商品,w 表示总重量,所以求解 m[i,w]就是子问题,那么看到某⼀个商品i的时候,如何决定是不是要装进背包,需要考虑以下:
- 该物品的重量大于背包的总重量,不考虑,换下⼀个商品;
- 该商品的重量小于背包的总重量,那么尝试把它装进去,如果装不下就把其他东西换出来,看看装进去后的总价值是不是更高了,否则还是按照之前的装法;
- 极端情况,所有的物品都装不下或者背包的承重能力为0,那么总价值都是0;
由以上的分析,可以得出m[i,w]的状态转移方程为:
m[i,w] = max{m[i-1,w], m[i-1,w-wi]+vi}
3.2.3 程序设计
# 循环的⽅式,自底向上求解 cache = {} items = range(1,9) weights = [10,1,5,9,10,7,3,12,5] values = [10,20,30,15,40,6,9,12,18] # 最⼤承重能⼒ W = 4 def knapsack(): for w in range(W+1): cache[get_key(0,w)] = 0 for i in items: cache[get_key(i,0)] = 0 for w in range(W+1): if w >= weights[i]: if cache[get_key(i-1,w-weights[i])] + values[i] > cache[get_key(i-1,w)]: cache[get_key(i,w)] = values[i] + cache[get_key(i-1,w-weights[i])] else: cache[get_key(i,w)] = cache[get_key(i-1,w)] else: cache[get_key(i,w)] = cache[get_key(i-1,w)] return cache[get_key(8,W)] def get_key(i,w): return str(i)+','+str(w) if __name__ == '__main__': # 背包把所有东西都能装进去做假设开始 print(knapsack())
29 >>>
推荐学习:python
以上是一起聊聊python程序设计思想的详细内容。更多信息请关注PHP中文网其他相关文章!

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

Python在现实世界中的应用包括数据分析、Web开发、人工智能和自动化。1)在数据分析中,Python使用Pandas和Matplotlib处理和可视化数据。2)Web开发中,Django和Flask框架简化了Web应用的创建。3)人工智能领域,TensorFlow和PyTorch用于构建和训练模型。4)自动化方面,Python脚本可用于复制文件等任务。

Python在数据科学、Web开发和自动化脚本领域广泛应用。1)在数据科学中,Python通过NumPy、Pandas等库简化数据处理和分析。2)在Web开发中,Django和Flask框架使开发者能快速构建应用。3)在自动化脚本中,Python的简洁性和标准库使其成为理想选择。

Python的灵活性体现在多范式支持和动态类型系统,易用性则源于语法简洁和丰富的标准库。1.灵活性:支持面向对象、函数式和过程式编程,动态类型系统提高开发效率。2.易用性:语法接近自然语言,标准库涵盖广泛功能,简化开发过程。

Python因其简洁与强大而备受青睐,适用于从初学者到高级开发者的各种需求。其多功能性体现在:1)易学易用,语法简单;2)丰富的库和框架,如NumPy、Pandas等;3)跨平台支持,可在多种操作系统上运行;4)适合脚本和自动化任务,提升工作效率。

可以,在每天花费两个小时的时间内学会Python。1.制定合理的学习计划,2.选择合适的学习资源,3.通过实践巩固所学知识,这些步骤能帮助你在短时间内掌握Python。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

Dreamweaver CS6
视觉化网页开发工具

WebStorm Mac版
好用的JavaScript开发工具

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

记事本++7.3.1
好用且免费的代码编辑器