搜索
首页web前端js教程了解Node.js Nestjs框架的模块机制,聊聊实现原理

本篇文章带大家了解一下Node 后端框架Nest.js,介绍一下Nestjs模块机制的概念和实现原理,希望对大家有所帮助!

了解Node.js Nestjs框架的模块机制,聊聊实现原理

Nest 提供了模块机制,通过在模块装饰器中定义提供者、导入、导出和提供者构造函数便完成了依赖注入,通过模块树组织整个应用程序的开发。按照框架本身的约定直接撸一个应用程序,是完全没有问题的。可是,于我而言对于框架宣称的依赖注入、控制反转、模块、提供者、元数据、相关装饰器等等,觉得缺乏一个更清晰系统的认识。

  • 为什么需要控制反转?
  • 什么是依赖注入?
  • 装饰器做了啥?
  • 模块 (@Module) 中的提供者(providers),导入(imports)、导出(exports)是什么实现原理?

好像能够理解,能够意会,但是让我自己从头说清楚,我说不清楚。于是进行了一番探索,便有了这篇文章。从现在起,我们从新出发,进入正文。

1 两个阶段

1.1 Express、Koa

一个语言和其技术社区的发展过程,一定是从底层功能逐渐往上丰富发展的,就像是树根慢慢生长为树枝再长满树叶的过程。在较早,Nodejs 出现了 Express 和 Koa 这样的基本 Web 服务框架。能够提供一个非常基础的服务能力。基于这样的框架,大量的中间件、插件开始在社区诞生,为框架提供更加丰富的服务。我们需要自己去组织应用依赖,搭建应用脚手架,灵活又繁琐,也具有一定工作量。

发展到后面,一些生产更高效、规则更统一的框架便诞生了,开启了一个更新的阶段。

1.2 EggJs、Nestjs

为了更加适应快速生产应用,统一规范,开箱即用,便发展出了 EggJs、NestJs、Midway等框架。此类框架,通过实现底层生命周期,将一个应用的实现抽象为一个通用可扩展的过程,我们只需要按照框架提供的配置方式,便可以更简单的实现应用程序。框架实现了程序的过程控制,而我们只需要在合适位置组装我们的零件就行,这看起来更像是流水线工作,每个流程被分割的很清楚,也省去了很多实现成本。

1.3 小结

上面的两个阶段只是一个铺垫,我们可以大致了解到,框架的升级是提高了生产效率,而要实现框架的升级,就会引入一些设计思路和模式,Nest 中就出现了控制反转、依赖注入、元编程的概念,下面我们来聊聊。

2 控制反转和依赖注入

2.1 依赖注入

一个应用程序实际就是非常多的抽象类,通过互相调用实现应用的所有功能。随着应用代码和功能复杂度的增加,项目一定会越来越难以维护,因为类越来越多,相互之间的关系越来越复杂。

举个例子,假如我们使用 Koa 开发我们的应用,Koa 本身主要实现了一套基础的 Web 服务能力,我们在实现应用的过程中,会定义很多类,这些类的实例化方式、相互依赖关系,都会由我们在代码逻辑自由组织和控制。每个类的实例化都是由我们手动 new,并且我们可以控制某个类是只实例化一次然后被共享,还是每次都实例化。下面的 B 类依赖 A,每次实例化 B 的时候,A 都会被实例化一次,所以对于每个实例 B 来说,A 是不被共享的实例。

class A{}
// B
class B{
    contructor(){
        this.a = new A();
    }
}

下面的 C 是获取的外部实例,所以多个 C 实例是共享的 app.a 这个实例。

class A{}
// C
const app = {};
app.a = new A();
class C{
    contructor(){
        this.a = app.a;
    }
}

下面的 D 是通过构造函数参数传入,可以每次传入一个非共享实例,也可以传入共享的 app.a 这个实例(D 和 F 共享 app.a),并且由于现在是参数的方式传入,我也可以传入一个 X 类实例。

class A{}
class X{}
// D
const app = {};
app.a = new A();
class D{
    contructor(a){
        this.a = a;
    }
}
class F{
    contructor(a){
        this.a = a;
    }
}
new D(app.a)
new F(app.a)
new D(new X())

这种方式就是依赖注入,把 B 所依赖的 A,通过传值的方式注入到 B 中。通过构造函数注入(传值)只是一种实现方式,也可以通过实现 set 方法调用传入,或者是其他任何方式,只要能把外部的一个依赖,传入到内部就行。其实就这么简单。

class A{}
// D
class D{
    setDep(a){
        this.a = a;
    }
}
const d = new D()
d.setDep(new A())

2.2 All in 依赖注入?

随着迭代进行,出现了 B 根据不同的前置条件依赖会发生变化。比如,前置条件一 this.a 需要传入 A 的实例,前置条件二this.a需要传入 X 的实例。这个时候,我们就会开始做实际的抽象了。我们就会改造成上面 D 这样依赖注入的方式。

初期,我们在实现应用的时候,在满足当时需求的情况下,就会实现出 B 和 C 类的写法,这本身也没有什么问题,项目迭代了几年之后,都不一定会动这部分代码。我们要是去考虑后期扩展什么的,是会影响开发效率的,而且不一定派的上用场。所以大部分时候,我们都是遇到需要抽象的场景,再对部分代码做抽象改造。

// 改造前
class B{
    contructor(){
        this.a = new A();
    }
}
new B()

// 改造后
class D{
    contructor(a){
        this.a = a;
    }
}
new D(new A())
new D(new X())

按照目前的开发模式,CBD三种类都会存在,B 和 C有一定的几率发展成为 D,每次升级 D 的抽象过程,我们会需要重构代码,这是一种实现成本。

这里举这个例子是想说明,在一个没有任何约束或者规定的开发模式下。我们是可以自由的写代码来达到各种类与类之间依赖控制。在一个完全开放的环境里,是非常自由的,这是一个刀耕火种的原始时代。由于没有一个固定的代码开发模式,没有一个最高行动纲领,随着不同开发人员的介入或者说同一个开发者不同时间段写代码的差别,代码在增长的过程中,依赖关系会变得非常不清晰,该共享的实例可能被多次实例化,浪费内存。从代码中,很难看清楚一个完整的依赖关系结构,代码可能会变得非常难以维护。

1.png

那我们每定义一个类,都按照依赖注入的方式来写,都写成 D 这样的,那 C 和 B 的抽象过程就被提前了,这样后期扩展也比较方便,减少了改造成本。所以把这叫All in 依赖注入,也就是我们所有依赖都通过依赖注入的方式实现。

可这样前期的实现成本又变高了,很难在团队协作中达到统一并且坚持下去,最终可能会落地失败,这也可以被定义为是一种过度设计,因为额外的实现成本,不一定能带来收益。

2.3 控制反转

既然已经约定好了统一使用依赖注入的方式,那是否可以通过框架的底层封装,实现一个底层控制器,约定一个依赖配置规则,控制器根据我们定义的依赖配置来控制实例化过程和依赖共享,帮助我们实现类管理。这样的设计模式就叫控制反转

控制反转可能第一次听说的时候会很难理解,控制指的什么?反转了啥?

猜测是由于开发者一开始就用此类框架,并没有体验过上个“Express、Koa时代”,缺乏旧社会毒打。加上这反转的用词,在程序中显得非常的抽象,难以望文生义。

前文我们说的实现 Koa 应用,所有的类完全由我们自由控制的,所以可以看作是一个常规的程序控制方式,那就叫它:控制正转。而我们使用 Nest,它底层实现一套控制器,我们只需要在实际开发过程中,按照约定写配置代码,框架程序就会帮我们管理类的依赖注入,所以就把它叫作:控制反转。

本质就是把程序的实现过程交给框架程序去统一管理,控制权从开发者,交给了框架程序。

控制正转:开发者纯手动控制程序

2.png

控制反转:框架程序控制

3.png

举个现实的例子,一个人本来是自己开车去上班的,他的目的就是到达公司。它自己开车,自己控制路线。而如果交出开车的控制权,就是去赶公交,他只需要选择一个对应的班车就可以到达公司了。单从控制来说,人就是被解放出来了,只需要记住坐那趟公交就行了,犯错的几率也小了,人也轻松了不少。公交系统就是控制器,公交线路就是约定配置。

通过如上的实际对比,我想应该有点能理解控制反转了。

2.4 小结

从 Koa 到 Nest,从前端的 JQuery 到 Vue React。其实都是一步步通过框架封装,去解决上个时代低效率的问题。

上面的 Koa 应用开发,通过非常原始的方式去控制依赖和实例化,就类似于前端中的 JQuery 操作 dom ,这种很原始的方式就把它叫控制正转,而 Vue React 就好似 Nest 提供了一层程序控制器,他们可以都叫控制反转。这也是个人理解,如果有问题期望大神指出。

下面再来说说 Nest 中的模块 @Module,依赖注入、控制反转需要它作为媒介。

3 Nestjs的模块(@Module)

Nestjs实现了控制反转,约定配置模块(@module)的 imports、exports、providers 管理提供者也就是类的依赖注入。

providers 可以理解是在当前模块注册和实例化类,下面的 A 和 B 就在当前模块被实例化,如果B在构造函数中引用 A,就是引用的当前 ModuleD 的 A 实例。

import { Module } from '@nestjs/common';
import { ModuleX } from './moduleX';
import { A } from './A';
import { B } from './B';

@Module({
  imports: [ModuleX],
  providers: [A,B],
  exports: [A]
})
export class ModuleD {}

// B
class B{
    constructor(a:A){
        this.a = a;
    }
}

exports 就是把当前模块中的 providers 中实例化的类,作为可被外部模块共享的类。比如现在 ModuleF 的 C 类实例化的时候,想直接注入 ModuleD 的 A 类实例。就在 ModuleD 中设置导出(exports)A,在 ModuleF 中通过 imports 导入 ModuleD。

按照下面的写法,控制反转程序会自动扫描依赖,首先看自己模块的 providers 中,有没有提供者 A,如果没有就去寻找导入的 ModuleD 中是否有 A 实例,发现存在,就取得 ModuleD 的 A 实例注入到 C 实例之中。

import { Module } from '@nestjs/common';
import { ModuleD} from './moduleD';
import { C } from './C';

@Module({
  imports: [ModuleD],
  providers: [C],
})
export class ModuleF {}

// C
class C {
    constructor(a:A){
        this.a = a;
    }
}

因此想要让外部模块使用当前模块的类实例,必须先在当前模块的providers里定义实例化类,再定义导出这个类,否则就会报错。

//正确
@Module({
  providers: [A],
  exports: [A]
})
//错误
@Module({
  providers: [],
  exports: [A]
})

后期补充

模块查找实例的过程回看了一下,确实有点不清晰。核心点就是providers里的类会被实例化,实例化后就是提供者,模块里只有providers里的类会被实例化,而导出和导入只是一个组织关系配置。模块会优先使用自己的提供者,如果没有,再去找导入的模块是否有对应提供者

这里还是提一嘴ts的知识点

export class C {
  constructor(private a: A) {
  }
}

由于 TypeScript 支持 constructor 参数(private、protected、public、readonly)隐式自动定义为 class 属性 (Parameter Property),因此无需使用 this.a = a。Nest 中都是这样的写法。

4 Nest 元编程

元编程的概念在 Nest 框架中得到了体现,它其中的控制反转、装饰器,就是元编程的实现。大概可以理解为,元编程本质还是编程,只是中间多了一些抽象的程序,这个抽象程序能够识别元数据(如@Module中的对象数据),其实就是一种扩展能力,能够将其他程序作为数据来处理。我们在编写这样的抽象程序,就是在元编程了。

4.1 元数据

Nest 文档中也常提到了元数据,元数据这个概念第一次看到的话,也会比较费解,需要随着接触时间增长习惯成理解,可以不用太过纠结。

元数据的定义是:描述数据的数据,主要是描述数据属性的信息,也可以理解为描述程序的数据。

Nest 中 @Module 配置的exports、providers、imports、controllers都是元数据,因为它是用来描述程序关系的数据,这个数据信息不是展示给终端用户的实际数据,而是给框架程序读取识别的。

4.2 Nest 装饰器

如果看看 Nest 中的装饰器源码,会发现,几乎每一个装饰器本身只是通过 reflect-metadata 定义了一个元数据。

@Injectable装饰器

export function Injectable(options?: InjectableOptions): ClassDecorator {
  return (target: object) => {
    Reflect.defineMetadata(INJECTABLE_WATERMARK, true, target);
    Reflect.defineMetadata(SCOPE_OPTIONS_METADATA, options, target);
  };
}

这里存在反射的概念,反射也比较好理解,拿 @Module 装饰器举例,定义元数据 providers,只是往providers数组里传入了类,在程序实际运行时providers里的类,会被框架程序自动实例化变为提供者,不需要开发者显示的去执行实例化和依赖注入。类只有在模块中实例化了之后才变成了提供者。providers中的类被反射了成了提供者,控制反转就是利用的反射技术。

换个例子的话,就是数据库中的 ORM(对象关系映射),使用 ORM 只需要定义表字段,ORM 库会自动把对象数据转换为 SQL 语句。

const data = TableModel.build();

data.time = 1;
data.browser = 'chrome';
    
data.save();
// SQL: INSERT INTO tableName (time,browser) [{"time":1,"browser":"chrome"}]

ORM 库就是利用了反射技术,让使用者只需要关注字段数据本身,对象被 ORM 库反射成为了 SQL 执行语句,开发者只需要关注数据字段,而不需要去写 SQL 了。

4.3 reflect-metadata

reflect-metadata 是一个反射库,Nest 用它来管理元数据。reflect-metadata 使用 WeakMap,创建一个全局单实例,通过 set 和 get 方法设置和获取被装饰对象(类、方法等)的元数据。

// 随便看看即可
var _WeakMap = !usePolyfill && typeof WeakMap === "function" ? WeakMap : CreateWeakMapPolyfill();   

var Metadata = new _WeakMap();
function defineMetadata(){
    OrdinaryDefineOwnMetadata(){
        GetOrCreateMetadataMap(){
          var targetMetadata = Metadata.get(O);
            if (IsUndefined(targetMetadata)) {
                if (!Create)
                    return undefined;
                targetMetadata = new _Map();
                Metadata.set(O, targetMetadata);
            }
            var metadataMap = targetMetadata.get(P);
            if (IsUndefined(metadataMap)) {
                if (!Create)
                    return undefined;
                metadataMap = new _Map();
                targetMetadata.set(P, metadataMap);
            }
            return metadataMap;
        }
    }
}

reflect-metadata 把被装饰者的元数据存在了全局单例对象中,进行统一管理。reflect-metadata 并不是实现具体的反射,而是提供了一个辅助反射实现的工具库。

5 最后

现在再来看看前面的几个疑问。

  • 为什么需要控制反转?

  • 什么是依赖注入?

  • 装饰器做了啥?

  • 模块 (@Module) 中的提供者(providers),导入(imports)、导出(exports)是什么实现原理?

1 和 2 我想前面已经说清楚了,如果还有点模糊,建议再回去看一遍并查阅一些其它文章资料,通过不同作者的思维来帮助理解知识。

5.1 问题 [3 4] 总述:

Nest 利用反射技术、实现了控制反转,提供了元编程能力,开发者使用 @Module 装饰器修饰类并定义元数据(providers\imports\exports),元数据被存储在全局对象中(使用 reflect-metadata 库)。程序运行后,Nest 框架内部的控制程序读取和注册模块树,扫描元数据并实例化类,使其成为提供者,并根据模块元数据中的 providers\imports\exports 定义,在所有模块的提供者中寻找当前类的其它依赖类的实例(提供者),找到后通过构造函数注入。

本文概念较多,也并没有做太详细的解析,概念需要时间慢慢理解,如果一时理解不透彻,也不必太过着急。好吧,就到这里,这篇文章还是花费不少精力,喜欢的朋友期望你能一键三连~

更多node相关知识,请访问:nodejs 教程

以上是了解Node.js Nestjs框架的模块机制,聊聊实现原理的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:掘金社区。如有侵权,请联系admin@php.cn删除
node.js流带打字稿node.js流带打字稿Apr 30, 2025 am 08:22 AM

Node.js擅长于高效I/O,这在很大程度上要归功于流。 流媒体汇总处理数据,避免内存过载 - 大型文件,网络任务和实时应用程序的理想。将流与打字稿的类型安全结合起来创建POWE

Python vs. JavaScript:性能和效率注意事项Python vs. JavaScript:性能和效率注意事项Apr 30, 2025 am 12:08 AM

Python和JavaScript在性能和效率方面的差异主要体现在:1)Python作为解释型语言,运行速度较慢,但开发效率高,适合快速原型开发;2)JavaScript在浏览器中受限于单线程,但在Node.js中可利用多线程和异步I/O提升性能,两者在实际项目中各有优势。

JavaScript的起源:探索其实施语言JavaScript的起源:探索其实施语言Apr 29, 2025 am 12:51 AM

JavaScript起源于1995年,由布兰登·艾克创造,实现语言为C语言。1.C语言为JavaScript提供了高性能和系统级编程能力。2.JavaScript的内存管理和性能优化依赖于C语言。3.C语言的跨平台特性帮助JavaScript在不同操作系统上高效运行。

幕后:什么语言能力JavaScript?幕后:什么语言能力JavaScript?Apr 28, 2025 am 12:01 AM

JavaScript在浏览器和Node.js环境中运行,依赖JavaScript引擎解析和执行代码。1)解析阶段生成抽象语法树(AST);2)编译阶段将AST转换为字节码或机器码;3)执行阶段执行编译后的代码。

Python和JavaScript的未来:趋势和预测Python和JavaScript的未来:趋势和预测Apr 27, 2025 am 12:21 AM

Python和JavaScript的未来趋势包括:1.Python将巩固在科学计算和AI领域的地位,2.JavaScript将推动Web技术发展,3.跨平台开发将成为热门,4.性能优化将是重点。两者都将继续在各自领域扩展应用场景,并在性能上有更多突破。

Python vs. JavaScript:开发环境和工具Python vs. JavaScript:开发环境和工具Apr 26, 2025 am 12:09 AM

Python和JavaScript在开发环境上的选择都很重要。1)Python的开发环境包括PyCharm、JupyterNotebook和Anaconda,适合数据科学和快速原型开发。2)JavaScript的开发环境包括Node.js、VSCode和Webpack,适用于前端和后端开发。根据项目需求选择合适的工具可以提高开发效率和项目成功率。

JavaScript是用C编写的吗?检查证据JavaScript是用C编写的吗?检查证据Apr 25, 2025 am 12:15 AM

是的,JavaScript的引擎核心是用C语言编写的。1)C语言提供了高效性能和底层控制,适合JavaScript引擎的开发。2)以V8引擎为例,其核心用C 编写,结合了C的效率和面向对象特性。3)JavaScript引擎的工作原理包括解析、编译和执行,C语言在这些过程中发挥关键作用。

JavaScript的角色:使网络交互和动态JavaScript的角色:使网络交互和动态Apr 24, 2025 am 12:12 AM

JavaScript是现代网站的核心,因为它增强了网页的交互性和动态性。1)它允许在不刷新页面的情况下改变内容,2)通过DOMAPI操作网页,3)支持复杂的交互效果如动画和拖放,4)优化性能和最佳实践提高用户体验。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。