搜索
首页后端开发Python教程归纳整理三十个Python的实用技巧

本篇文章给大家带来了关于python的相关知识,其中主要总结了一些编程过程中常用到的使用技巧,包括了检查对象、使用多行字符串、从函数中返回多个值等等相关内容,希望对大家有帮助。

归纳整理三十个Python的实用技巧

 推荐学习:python教程

技巧1 就地交换两个数字

Python 提供了一种在一行中进行赋值和交换的直观方式。请参考下面的例子。

x, y = 10, 20print(x, y)
 x, y = y, xprint(x, y)
 #1 (10, 20)#2 (20, 10)

右边的赋值为一个新的元组播种。而左边的立即将那个(未引用的)元组解包到名称 <a><b>

分配完成后,新元组将被取消引用并标记为垃圾收集。变量的交换也发生在最终。


技巧2 比较运算符的链接。

比较运算符的聚合是另一个有时可以派上用场的技巧。

n = 10 result = 1 < n < 20 print(result) # True result = 1 > n <= 9 print(result) # False

技巧3 使用三元运算符进行条件赋值。

三元运算符是 if-else 语句的快捷方式,也称为条件运算符。

[on_true] if [expression] else [on_false]

以下是一些示例,您可以使用它们使代码紧凑简洁。

下面的语句与它的意思相同,即“如果 y 为 9,则将 10 分配给 x,否则将 20 分配给 x ”。如果需要,我们可以扩展运算符的链接。

x = 10 if (y == 9) else 20

同样,我们可以对类对象做同样的事情。

x = (classA if y == 1 else classB)(param1, param2)

在上面的例子中,classA 和 classB 是两个类,其中一个类构造函数将被调用。

下面是一个没有的例子。加入评估最小数字的条件。

def small(a, b, c):
	return a if a <= b and a <= c else (b if b <= a and b <= c else c)
	print(small(1, 0, 1))print(small(1, 2, 2))print(small(2, 2, 3))print(small(5, 4, 3))#Output#0 #1 #2 #3

我们甚至可以在列表推导式中使用三元运算符。

[m**2 if m > 10 else m**4 for m in range(50)]#=> [0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401]

技巧4 使用多行字符串

基本方法是使用从 C 语言派生的反斜杠。

multiStr = "select * from multi_row \
where row_id < 5"print(multiStr)# select * from multi_row where row_id < 5

另一个技巧是使用三引号。

multiStr = """select * from multi_row 
where row_id < 5"""print(multiStr)#select * from multi_row #where row_id < 5

上述方法的共同问题是缺乏适当的缩进。如果我们尝试缩进,它会在字符串中插入空格。

所以最终的解决方案是将字符串拆分成多行,并将整个字符串括在括号中。

multiStr= ("select * from multi_row ""where row_id < 5 ""order by age") print(multiStr)#select * from multi_row where row_id < 5 order by age

技巧5 将列表元素存储到新变量中

我们可以使用一个列表来初始化一个 no。的变量。在解压列表时,变量的数量不应超过编号。列表中的元素。

testList = [1,2,3]x, y, z = testListprint(x, y, z)#-> 1 2 3

技巧6 打印导入模块的文件路径

如果您想知道代码中导入的模块的绝对位置,请使用以下技巧。

import threading 
import socketprint(threading)print(socket)#1- <module &#39;threading&#39; from &#39;/usr/lib/python2.7/threading.py&#39;>#2- <module &#39;socket&#39; from &#39;/usr/lib/python2.7/socket.py&#39;>

技巧7 使用交互式“_”运算符

这是一个有用的功能,我们很多人都不知道。

在 Python 控制台中,每当我们测试表达式或调用函数时,结果都会发送到临时名称 _(下划线)。

>>> 2 + 13>>> _3>>> print _3

“_”引用上次执行的表达式的输出。


技巧8 字典/集合理解

就像我们使用列表推导一样,我们也可以使用字典/集合推导。它们易于使用且同样有效。这是一个例子。

testDict = {i: i * i for i in xrange(10)} testSet = {i * 2 for i in xrange(10)}print(testSet)print(testDict)
#set([0, 2, 4, 6, 8, 10, 12, 14, 16, 18])
#{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}

注意 -两个语句中只有 <:> 的区别。此外,要在 Python3 中运行上述代码,请将 替换为 。


技巧9 调试脚本

我们可以在 模块的帮助下在 Python 脚本中设置断点。请按照以下示例进行操作。

import pdb
pdb.set_trace()

我们可以在脚本的任何地方指定 并在那里设置断点。这是非常方便的。


技巧10 设置文件共享

Python 允许运行 HTTP 服务器,您可以使用它从服务器根目录共享文件。下面是启动服务器的命令。

Python 2

python -m SimpleHTTPServer

Python 3

python3 -m http.server

以上命令将在默认端口 8000 上启动服务器。您还可以通过将自定义端口作为最后一个参数传递给上述命令来使用自定义端口。


技巧11 在 Python 中检查对象

我们可以通过调用 dir() 方法来检查 Python 中的对象。这是一个简单的例子。

test = [1, 3, 5, 7]print( dir(test) )
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__delslice__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getslice__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__setslice__', '__sizeof__', '__str__', '__subclasshook__', 'append', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

技巧12 简化 if 语句

要验证多个值,我们可以通过以下方式进行。

if m in [1,3,5,7]:

代替:

if m==1 or m==3 or m==5 or m==7:

或者,我们可以使用 ‘{1,3,5,7}’ 而不是 ‘[1,3,5,7]’ 作为 ‘in’ 运算符,因为 ‘set’ 可以通过 O(1) 访问每个元素。


技巧13 在运行时检测 Python 版本

有时,如果当前运行的 Python 引擎低于支持的版本,我们可能不想执行我们的程序。为此,您可以使用以下代码片段。它还以可读格式打印当前使用的 Python 版本。

import sys#Detect the Python version currently in use.if not hasattr(sys, "hexversion") or sys.hexversion != 50660080:
    print("Sorry, you aren't running on Python 3.5\n")
    print("Please upgrade to 3.5.\n")
    sys.exit(1)
    #Print Python version in a readable format.print("Current Python version: ", sys.version)

或者,您可以在上面的代码中使用sys.version_info >= (3, 5)替换sys.hexversion!= 50660080。这是一位知情读者的建议。

在 Python 2.7 上运行时的输出。

Python 2.7.10 (default, Jul 14 2015, 19:46:27)[GCC 4.8.2] on linux
   
Sorry, you aren't running on Python 3.5Please upgrade to 3.5.

在 Python 3.5 上运行时的输出。

Python 3.5.1 (default, Dec 2015, 13:05:11)[GCC 4.8.2] on linux
   
Current Python version:  3.5.2 (default, Aug 22 2016, 21:11:05) [GCC 5.3.0]

技巧14 组合多个字符串

如果您想连接列表中所有可用的标记,请参见以下示例。

>>> test = ['I', 'Like', 'Python', 'automation']

现在,让我们从上面给出的列表中的元素创建一个字符串。

>>> print ''.join(test)

技巧15 反转 string/list 的四种方法

反转列表本身

testList = [1, 3, 5]testList.reverse()print(testList)#-> [5, 3, 1]

在循环中迭代时反转

for element in reversed([1,3,5]): print(element)#1-> 5#2-> 3#3-> 1

反转一个字符串

"Test Python"[::-1]

这使输出为“nohtyP tseT”

使用切片反转列表

[1, 3, 5][::-1]

上面的命令将输出 [5, 3, 1]。


技巧16 玩枚举

使用枚举器,在循环中很容易找到索引。

testlist = [10, 20, 30]for i, value in enumerate(testlist):
	print(i, ': ', value)#1-> 0 : 10#2-> 1 : 20#3-> 2 : 30

技巧17 在 Python 中使用枚举。

我们可以使用以下方法来创建枚举定义。

class Shapes:
	Circle, Square, Triangle, Quadrangle = range(4)print(Shapes.Circle)print(Shapes.Square)print(Shapes.Triangle)print(Shapes.Quadrangle)#1-> 0#2-> 1#3-> 2#4-> 3

技巧18 从函数返回多个值。

支持此功能的编程语言并不多。但是,Python 中的函数确实会返回多个值。

请参考以下示例以查看它的工作情况。

# function returning multiple values.def x():
	return 1, 2, 3, 4# Calling the above function.a, b, c, d = x()print(a, b, c, d)

#-> 1 2 3 4


技巧19 使用 splat 运算符解包函数参数。

splat 运算符提供了一种解压参数列表的艺术方式。为清楚起见,请参阅以下示例。

def test(x, y, z):
	print(x, y, z)testDict = {'x': 1, 'y': 2, 'z': 3} testList = [10, 20, 30]test(*testDict)test(**testDict)test(*testList)#1-> x y z#2-> 1 2 3#3-> 10 20 30

技巧20 使用字典来存储 switch。

我们可以制作一个字典存储表达式。

stdcalc = {
	'sum': lambda x, y: x + y,
	'subtract': lambda x, y: x - y}print(stdcalc['sum'](9,3))print(stdcalc['subtract'](9,3))#1-> 12#2-> 6

技巧21 计算一行中任意数字的阶乘。

Python 2.x.

result = (lambda k: reduce(int.__mul__, range(1,k+1),1))(3)print(result)#-> 6

Python 3.x.

import functools
result = (lambda k: functools.reduce(int.__mul__, range(1,k+1),1))(3)print(result)

#-> 6


技巧22 查找列表中出现频率最高的值。

test = [1,2,3,4,2,2,3,1,4,4,4]print(max(set(test), key=test.count))#-> 4

技巧23 重置递归限制。

Python 将递归限制限制为 1000。我们可以重置它的值。

import sys

x=1001print(sys.getrecursionlimit())sys.setrecursionlimit(x)print(sys.getrecursionlimit())#1-> 1000#2-> 1001

请仅在需要时应用上述技巧。


技巧24 检查对象的内存使用情况。

在 Python 2.7 中,32 位整数消耗 24 字节,而在 Python 3.5 中使用 28 字节。为了验证内存使用情况,我们可以调用 方法。

Python 2.7.

import sys
x=1print(sys.getsizeof(x))#-> 24

Python 3.5.

import sys
x=1print(sys.getsizeof(x))#-> 28

技巧25 使用 __slots__ 减少内存开销。

你有没有观察到你的 Python 应用程序消耗了大量资源,尤其是内存?这是使用<__slots__>类变量在一定程度上减少内存开销的一种技巧。

import sysclass FileSystem(object):

	def __init__(self, files, folders, devices):
		self.files = files
		self.folders = folders
		self.devices = devicesprint(sys.getsizeof( FileSystem ))class FileSystem1(object):

	__slots__ = ['files', 'folders', 'devices']
	
	def __init__(self, files, folders, devices):
		self.files = files
		self.folders = folders
		self.devices = devicesprint(sys.getsizeof( FileSystem1 ))#In Python 3.5#1-> 1016#2-> 888

显然,您可以从结果中看到内存使用量有所节省。但是当一个类的内存开销不必要地大时,你应该使用 __slots__ 。仅在分析应用程序后执行此操作。否则,您将使代码难以更改并且没有真正的好处。


技巧26 Lambda 模仿打印功能。

import sys
lprint=lambda *args:sys.stdout.write(" ".join(map(str,args)))lprint("python", "tips",1000,1001)#-> python tips 1000 1001

技巧27 从两个相关序列创建字典。

t1 = (1, 2, 3)t2 = (10, 20, 30)print(dict (zip(t1,t2)))#-> {1: 10, 2: 20, 3: 30}

技巧28 在线搜索字符串中的多个前缀。

print("http://www.baidu.com".startswith(("http://", "https://")))print("https://juejin.cn".endswith((".com", ".cn")))#1-> True#2-> True

技巧29 形成一个统一的列表,不使用任何循环。

import itertools
test = [[-1, -2], [30, 40], [25, 35]]print(list(itertools.chain.from_iterable(test)))#-> [-1, -2, 30, 40, 25, 35]

如果您有一个包含嵌套列表或元组作为元素的输入列表,请使用以下技巧。但是,这里的限制是它使用了 for 循环。

def unifylist(l_input, l_target):
    for it in l_input:
        if isinstance(it, list):
            unifylist(it, l_target)
        elif isinstance(it, tuple):
            unifylist(list(it), l_target)
        else:
            l_target.append(it)
    return l_target

test =  [[-1, -2], [1,2,3, [4,(5,[6,7])]], (30, 40), [25, 35]]print(unifylist(test,[]))#Output => [-1, -2, 1, 2, 3, 4, 5, 6, 7, 30, 40, 25, 35]

统一包含列表和元组的列表的另一种更简单的方法是使用 Python 的 < more_itertools > 包。它不需要循环。只需执行 < pip install more_itertools >,如果还没有的话。

import more_itertools

test = [[-1, -2], [1, 2, 3, [4, (5, [6, 7])]], (30, 40), [25, 35]]print(list(more_itertools.collapse(test)))#Output=> [-1, -2, 1, 2, 3, 4, 5, 6, 7, 30, 40, 25, 35]

技巧30 在 Python 中实现真正的 switch-case 语句。

这是使用字典来模仿 switch-case 构造的代码。

def xswitch(x): 
	return xswitch._system_dict.get(x, None) xswitch._system_dict = {'files': 10, 'folders': 5, 'devices': 2}print(xswitch('default'))print(xswitch('devices'))#1-> None#2-> 2

 推荐学习:python学习教程

以上是归纳整理三十个Python的实用技巧的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:CSDN。如有侵权,请联系admin@php.cn删除
Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python vs. C:内存管理和控制Python vs. C:内存管理和控制Apr 19, 2025 am 12:17 AM

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

科学计算的Python:详细的外观科学计算的Python:详细的外观Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python和C:找到合适的工具Python和C:找到合适的工具Apr 19, 2025 am 12:04 AM

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

数据科学和机器学习的Python数据科学和机器学习的PythonApr 19, 2025 am 12:02 AM

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

学习Python:2小时的每日学习是否足够?学习Python:2小时的每日学习是否足够?Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Web开发的Python:关键应用程序Web开发的Python:关键应用程序Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。