首页 >后端开发 >Golang >一文了解Golang中的缓存库freecache

一文了解Golang中的缓存库freecache

青灯夜游
青灯夜游转载
2022-02-21 10:43:425817浏览

本篇文章带大家了解一下Golang缓存,深入浅出的介绍一下Golang中的缓存库freecache,希望对大家有所帮助!

一文了解Golang中的缓存库freecache

go开发缓存场景一般使用map或者缓存框架,为了线程安全会使用sync.Map或线程安全的缓存框架。

缓存场景中如果数据量大于百万级别,需要特别考虑数据类型对于gc的影响(注意string类型底层是指针 Len Cap,因此也算是指针类型),如果缓存key和value都是非指针类型的话就无需多虑了。【相关推荐:Go视频教程

但实际应用场景中,key和value是(包含)指针类型数据是很常见的,因此使用缓存框架需要特别注意其对gc影响,从是否对GC影响角度来看缓存框架大致分为2类:

  • 零GC开销:比如freecache或bigcache这种,底层基于ringbuf,减小指针个数;
  • 有GC开销:直接基于Map来实现的缓存框架。

对于map而言,gc时会扫描所有key/value键值对,如果其都是基本类型,那么gc便不会再扫描。

下面以freecache为例分析下其实现原理,代码示例如下:

func main() {
   cacheSize := 100 * 1024 * 1024
   cache := freecache.NewCache(cacheSize)

   for i := 0; i < N; i++ {
      str := strconv.Itoa(i)
      _ = cache.Set([]byte(str), []byte(str), 1)
   }

   now := time.Now()
   runtime.GC()
   fmt.Printf("freecache, GC took: %s\n", time.Since(now))
   _, _ = cache.Get([]byte("aa"))

   now = time.Now()
   for i := 0; i < N; i++ {
      str := strconv.Itoa(i)
      _, _ = cache.Get([]byte(str))
   }
   fmt.Printf("freecache, Get took: %s\n\n", time.Since(now))
}

1 初始化

freecache.NewCache会初始化本地缓存,size表示存储空间大小,freecache会初始化256个segment,每个segment是独立的存储单元,freecache加锁维度也是基于segment的,每个segment有一个ringbuf,初始大小为size/256。freecache号称零GC的来源就是其指针是固定的,只有512个,每个segment有2个,分别是rb和slotData(注意切片为指针类型)。

type segment struct {
   rb            RingBuf // ring buffer that stores data
   segId         int
   _             uint32  // 占位
   missCount     int64
   hitCount      int64
   entryCount    int64
   totalCount    int64      // number of entries in ring buffer, including deleted entries.
   totalTime     int64      // used to calculate least recent used entry.
   timer         Timer      // Timer giving current time
   totalEvacuate int64      // used for debug
   totalExpired  int64      // used for debug
   overwrites    int64      // used for debug
   touched       int64      // used for debug
   vacuumLen     int64      // up to vacuumLen, new data can be written without overwriting old data.
   slotLens      [256]int32 // The actual length for every slot.
   slotCap       int32      // max number of entry pointers a slot can hold.
   slotsData     []entryPtr // 索引指针
}

func NewCacheCustomTimer(size int, timer Timer) (cache *Cache) {
    cache = new(Cache)
    for i := 0; i < segmentCount; i++ {
        cache.segments[i] = newSegment(size/segmentCount, i, timer)
    }
}
func newSegment(bufSize int, segId int, timer Timer) (seg segment) {
    seg.rb = NewRingBuf(bufSize, 0)
    seg.segId = segId
    seg.timer = timer
    seg.vacuumLen = int64(bufSize)
    seg.slotCap = 1
    seg.slotsData = make([]entryPtr, 256*seg.slotCap) // 每个slotData初始化256个单位大小
}

2 读写流程

freecache的key和value都是[]byte数组,使用时需要自行序列化和反序列化,如果缓存复杂对象不可忽略其序列化和反序列化带来的影响,首先看下Set流程:

_ = cache.Set([]byte(str), []byte(str), 1)

Set流程首先对key进行hash,hashVal类型uint64,其低8位segID对应segment数组,低8-15位表示slotId对应slotsData下标,高16位表示slotsData下标对应的[]entryPtr某个数据,这里需要查找操作。注意[]entryPtr数组大小为slotCap(初始为1),当扩容时会slotCap倍增。

每个segment对应一个lock(sync.Mutex),因此其能够支持较大并发量,而不像sync.Map只有一个锁。

func (cache *Cache) Set(key, value []byte, expireSeconds int) (err error) {
   hashVal := hashFunc(key)
   segID := hashVal & segmentAndOpVal // 低8位
   cache.locks[segID].Lock() // 加锁
   err = cache.segments[segID].set(key, value, hashVal, expireSeconds)
   cache.locks[segID].Unlock()
}

func (seg *segment) set(key, value []byte, hashVal uint64, expireSeconds int) (err error) {
   slotId := uint8(hashVal >> 8)
   hash16 := uint16(hashVal >> 16)
   slot := seg.getSlot(slotId)
   idx, match := seg.lookup(slot, hash16, key)

   var hdrBuf [ENTRY_HDR_SIZE]byte
   hdr := (*entryHdr)(unsafe.Pointer(&hdrBuf[0]))
   if match { // 有数据更新操作
      matchedPtr := &slot[idx]
      seg.rb.ReadAt(hdrBuf[:], matchedPtr.offset)
      hdr.slotId = slotId
      hdr.hash16 = hash16
      hdr.keyLen = uint16(len(key))
      originAccessTime := hdr.accessTime
      hdr.accessTime = now
      hdr.expireAt = expireAt
      hdr.valLen = uint32(len(value))
      if hdr.valCap >= hdr.valLen {
         // 已存在数据value空间能存下此次value大小
         atomic.AddInt64(&seg.totalTime, int64(hdr.accessTime)-int64(originAccessTime))
         seg.rb.WriteAt(hdrBuf[:], matchedPtr.offset)
         seg.rb.WriteAt(value, matchedPtr.offset+ENTRY_HDR_SIZE+int64(hdr.keyLen))
         atomic.AddInt64(&seg.overwrites, 1)
         return
      }
      // 删除对应entryPtr,涉及到slotsData内存copy,ringbug中只是标记删除
      seg.delEntryPtr(slotId, slot, idx)
      match = false
      // increase capacity and limit entry len.
      for hdr.valCap < hdr.valLen {
         hdr.valCap *= 2
      }
      if hdr.valCap > uint32(maxKeyValLen-len(key)) {
         hdr.valCap = uint32(maxKeyValLen - len(key))
      }
   } else { // 无数据
      hdr.slotId = slotId
      hdr.hash16 = hash16
      hdr.keyLen = uint16(len(key))
      hdr.accessTime = now
      hdr.expireAt = expireAt
      hdr.valLen = uint32(len(value))
      hdr.valCap = uint32(len(value))
      if hdr.valCap == 0 { // avoid infinite loop when increasing capacity.
         hdr.valCap = 1
      }
   }
   
   // 数据实际长度为 ENTRY_HDR_SIZE=24 + key和value的长度    
   entryLen := ENTRY_HDR_SIZE + int64(len(key)) + int64(hdr.valCap)
   slotModified := seg.evacuate(entryLen, slotId, now)
   if slotModified {
      // the slot has been modified during evacuation, we need to looked up for the &#39;idx&#39; again.
      // otherwise there would be index out of bound error.
      slot = seg.getSlot(slotId)
      idx, match = seg.lookup(slot, hash16, key)
      // assert(match == false)
   }
   newOff := seg.rb.End()
   seg.insertEntryPtr(slotId, hash16, newOff, idx, hdr.keyLen)
   seg.rb.Write(hdrBuf[:])
   seg.rb.Write(key)
   seg.rb.Write(value)
   seg.rb.Skip(int64(hdr.valCap - hdr.valLen))
   atomic.AddInt64(&seg.totalTime, int64(now))
   atomic.AddInt64(&seg.totalCount, 1)
   seg.vacuumLen -= entryLen
   return
}

seg.evacuate会评估ringbuf是否有足够空间存储key/value,如果空间不够,其会从空闲空间尾部后一位(也就是待淘汰数据的开始位置)开始扫描(oldOff := seg.rb.End() seg.vacuumLen - seg.rb.Size()),如果对应数据已被逻辑deleted或者已过期,那么该块内存可以直接回收,如果不满足回收条件,则将entry从环头调换到环尾,再更新entry的索引,如果这样循环5次还是不行,那么需要将当前oldHdrBuf回收以满足内存需要。

执行完seg.evacuate所需空间肯定是能满足的,然后就是写入索引和数据了,insertEntryPtr就是写入索引操作,当[]entryPtr中元素个数大于seg.slotCap(初始1)时,需要扩容操作,对应方法见seg.expand,这里不再赘述。

写入ringbuf就是执行rb.Write即可。

func (seg *segment) evacuate(entryLen int64, slotId uint8, now uint32) (slotModified bool) {
   var oldHdrBuf [ENTRY_HDR_SIZE]byte
   consecutiveEvacuate := 0
   for seg.vacuumLen < entryLen {
      oldOff := seg.rb.End() + seg.vacuumLen - seg.rb.Size()
      seg.rb.ReadAt(oldHdrBuf[:], oldOff)
      oldHdr := (*entryHdr)(unsafe.Pointer(&oldHdrBuf[0]))
      oldEntryLen := ENTRY_HDR_SIZE + int64(oldHdr.keyLen) + int64(oldHdr.valCap)
      if oldHdr.deleted { // 已删除
         consecutiveEvacuate = 0
         atomic.AddInt64(&seg.totalTime, -int64(oldHdr.accessTime))
         atomic.AddInt64(&seg.totalCount, -1)
         seg.vacuumLen += oldEntryLen
         continue
      }
      expired := oldHdr.expireAt != 0 && oldHdr.expireAt < now
      leastRecentUsed := int64(oldHdr.accessTime)*atomic.LoadInt64(&seg.totalCount) <= atomic.LoadInt64(&seg.totalTime)
      if expired || leastRecentUsed || consecutiveEvacuate > 5 {
      // 可以回收
         seg.delEntryPtrByOffset(oldHdr.slotId, oldHdr.hash16, oldOff)
         if oldHdr.slotId == slotId {
            slotModified = true
         }
         consecutiveEvacuate = 0
         atomic.AddInt64(&seg.totalTime, -int64(oldHdr.accessTime))
         atomic.AddInt64(&seg.totalCount, -1)
         seg.vacuumLen += oldEntryLen
         if expired {
            atomic.AddInt64(&seg.totalExpired, 1)
         } else {
            atomic.AddInt64(&seg.totalEvacuate, 1)
         }
      } else {
         // evacuate an old entry that has been accessed recently for better cache hit rate.
         newOff := seg.rb.Evacuate(oldOff, int(oldEntryLen))
         seg.updateEntryPtr(oldHdr.slotId, oldHdr.hash16, oldOff, newOff)
         consecutiveEvacuate++
         atomic.AddInt64(&seg.totalEvacuate, 1)
      }
   }
}

freecache的Get流程相对来说简单点,通过hash找到对应segment,通过slotId找到对应索引slot,然后通过二分 遍历寻找数据,如果找不到直接返回ErrNotFound,否则更新一些time指标。Get流程还会更新缓存命中率相关指标。

func (cache *Cache) Get(key []byte) (value []byte, err error) {
   hashVal := hashFunc(key)
   segID := hashVal & segmentAndOpVal
   cache.locks[segID].Lock()
   value, _, err = cache.segments[segID].get(key, nil, hashVal, false)
   cache.locks[segID].Unlock()
   return
}
func (seg *segment) get(key, buf []byte, hashVal uint64, peek bool) (value []byte, expireAt uint32, err error) {
   hdr, ptr, err := seg.locate(key, hashVal, peek) // hash+定位查找
   if err != nil {
      return
   }
   expireAt = hdr.expireAt
   if cap(buf) >= int(hdr.valLen) {
      value = buf[:hdr.valLen]
   } else {
      value = make([]byte, hdr.valLen)
   }

   seg.rb.ReadAt(value, ptr.offset+ENTRY_HDR_SIZE+int64(hdr.keyLen))
}

定位到数据之后,读取ringbuf即可,注意一般来说读取到的value是新创建的内存空间,因此涉及到[]byte数据的复制操作。

3 总结

从常见的几个缓存框架压测性能来看,Set性能差异较大但还不是数量级别的差距,Get性能差异不大,因此对于绝大多数场景来说不用太关注Set/Get性能,重点应该看功能是否满足业务需求和gc影响,性能压测比较见:https://golang2.eddycjy.com/posts/ch5/04-performance/

缓存有一个特殊的场景,那就是将数据全部缓存在内存,涉及到更新时都是全量更新(替换),该场景下使用freecache,如果size未设置好可能导致部分数据被淘汰,是不符合预期的,这个一定要注意。为了使用freecache避免该问题,需要将size设置"足够大",但也要注意其内存空间占用。

更多编程相关知识,请访问:编程教学!!

以上是一文了解Golang中的缓存库freecache的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文转载于:juejin.cn。如有侵权,请联系admin@php.cn删除