本篇文章带大家了解一下Redis中的字典、哈希算法和ReHash原理,希望对大家有所帮助!
Redis 中的字典被广泛用于实现Redis的各种功能,其中包括数据库和哈希键。
字典的底层实现为哈希表,每个字典带有两个哈希表,一个平时使用,另一个在进行rehash扩充空间时才使用。【相关推荐:Redis视频教程】
字典的结构定义
typedef struct dict { // 类型特定函数 dictType *type; // 私有数据 void *privdata; // 哈希表,两个元素 dictht ht[2] // rehash时记录的索引下标,当没有rehash时,值为-1 int rehashidx; } dict;
==在进行 rehash时,rehashidx每迁移一个索引的entry数据就会 + 1;==
其中,哈希表dictht 的结构定义为:
typedef struct dictht { // 哈希表数组 dictEntry **table; // 哈希表大小 unsigned long size; // 哈希表大小掩码,用于计算索引值 unsigned long sizenask; // 该哈希表已有节点的数量 unsigned long uesd; } dictht;
其中,table是一个数组,数组的每一个元素指向 dictEntry 类型的指针,dictEntry 类型里保存着一个键值对。
在这里也可以看出哈希表的节点是链表相连来解决哈希冲突问题的,也就是链地址法。
哈希冲突与哈希算法
为了实现从键到值的快速访问,Redis使用了哈希表来保存所有键值对。键对应Redis设置的Key,而值对应的并不是值本身,而是指向具体值的指针。使用哈希表的最大好处就是可以用O(1)的时间复杂度快速找到键值对。但既然是哈希表,那么必然会有着哈希冲突的问题。
哈希冲突即指的是,当两个key的哈希值和哈希桶计算对应关系时,正好落在了同一个哈希桶上。
Redis解决哈希冲突的方式是使用链式哈希,即拉链法。当多个元素指向同一个哈希桶时,在同一个哈希桶中采用链表来保存对应的数据,它们之间依次用指针连接。
哈希算法
当要将一个新的键值对添加到字典里面时,程序需要先根据键值对计算出哈希值和索引值,然后再根据索引值,将包含新键值对的哈希表节点放到哈希表数组的指定索引上面。
reHash 过程
在哈希表中有个负载因子(load factor)来控制哈希表保存的键值对数量。而这就需要rehash(重新散列)操作来完成。其中,负载因子的计算公式为:
// 负载因子 = 哈希表已保存的节点数量 / 哈希表大小 load_factor = ht[0].used / ht[0].size
哈希表扩展与收缩的条件如下:
- 服务器目前没有在执行 BGSAVE 命令或者 BGREWRITEAOF 命令,并且哈希表的负载因子大于等于1;
- 服务器目前正在执行 BGSAVE 命令或者 BGREWRITEAOF 命令,并且哈希表的负载因子大于等于5;
上述的条件有一个满足,就会执行rehash的过程。
如果服务器正在执行BGSAVE 或者 BGREWRITEAOF时,Redis会创建当前服务器进程的子进程
rehash的过程大概分为三步:
给哈希表2分配更大的空间,例如是当前哈希表1的两倍;
把哈希表1中的数据重新映射并拷贝到哈希表2中;
释放哈希表1的空间;
其中,第一步分配空间的大小是由当前的rehash操作类型 以及 当前哈希表的键值对数量决定的。
-
当执行的是扩展操作,分配的空间大小 为第一个大于等于(哈希表的键值对数量 * 2) 的2^n 值;
假设 当前的键值对数量为4,那么 4 * 2 = 8,因为8 刚好等于2^3,即刚好等于第一个等于2^n的值,所以扩展空间就为 8;
如果执行的是收缩操作,分配的空间大小 为第一个大于等于(哈希表的键值对数量 ) 的2^n 值;
渐进式reHash
当哈希表数量多时,如果一下子将数据都复制过去,那么就很有可能对服务器造成影响。所以Redis是分多次进行rehash的,也就是渐进式rehash。
简单来说就是在第二步操作时,Redis仍然正常处理客户端请求,每处理一个请求时,从哈希表1中的第一个索引位置开始,顺带着将这个索引位置上所有的entries元素拷贝到哈希表2中;等下一次请求时,再顺带拷贝下一个索引位置的entries。
这样就很巧妙地将一次性大量拷贝的开销,分摊到多次处理请求的过程中了,避免了耗时操作,保证了数据的快速访问。
rehash时期间的哈希表操作
在进行 渐进式rehash操作时,字典的删除、查找、更新等操作会在两个哈希表中执行。例如要在字典中查找一个键的话,会先去原表中进行查询,如果找不到就会去新表查询。
而字典的添加操作一律只会保存在新表中。
更多编程相关知识,请访问:编程入门!!
以上是浅谈Redis中的字典、哈希算法和ReHash原理的详细内容。更多信息请关注PHP中文网其他相关文章!

Redis的数据模型和结构包括五种主要类型:1.字符串(String):用于存储文本或二进制数据,支持原子操作。2.列表(List):有序元素集合,适合队列和堆栈。3.集合(Set):无序唯一元素集合,支持集合运算。4.有序集合(SortedSet):带分数的唯一元素集合,适用于排行榜。5.哈希表(Hash):键值对集合,适合存储对象。

Redis的数据库方法包括内存数据库和键值存储。1)Redis将数据存储在内存中,读写速度快。2)它使用键值对存储数据,支持复杂数据结构,如列表、集合、哈希表和有序集合,适用于缓存和NoSQL数据库。

Redis是一个强大的数据库解决方案,因为它提供了极速性能、丰富的数据结构、高可用性和扩展性、持久化能力以及广泛的生态系统支持。1)极速性能:Redis的数据存储在内存中,读写速度极快,适合高并发和低延迟应用。2)丰富的数据结构:支持多种数据类型,如列表、集合等,适用于多种场景。3)高可用性和扩展性:支持主从复制和集群模式,实现高可用性和水平扩展。4)持久化和数据安全:通过RDB和AOF两种方式实现数据持久化,确保数据的完整性和可靠性。5)广泛的生态系统和社区支持:拥有庞大的生态系统和活跃社区,

Redis的关键特性包括速度、灵活性和丰富的数据结构支持。1)速度:Redis作为内存数据库,读写操作几乎瞬时,适用于缓存和会话管理。2)灵活性:支持多种数据结构,如字符串、列表、集合等,适用于复杂数据处理。3)数据结构支持:提供字符串、列表、集合、哈希表等,适合不同业务需求。

Redis的核心功能是高性能的内存数据存储和处理系统。1)高速数据访问:Redis将数据存储在内存中,提供微秒级别的读写速度。2)丰富的数据结构:支持字符串、列表、集合等,适应多种应用场景。3)持久化:通过RDB和AOF方式将数据持久化到磁盘。4)发布订阅:可用于消息队列或实时通信系统。

Redis支持多种数据结构,具体包括:1.字符串(String),适合存储单一值数据;2.列表(List),适用于队列和栈;3.集合(Set),用于存储不重复数据;4.有序集合(SortedSet),适用于排行榜和优先级队列;5.哈希表(Hash),适合存储对象或结构化数据。

Redis计数器是一种使用Redis键值对存储来实现计数操作的机制,包含以下步骤:创建计数器键、增加计数、减少计数、重置计数和获取计数。Redis计数器的优势包括速度快、高并发、持久性和简单易用。它可用于用户访问计数、实时指标跟踪、游戏分数和排名以及订单处理计数等场景。

使用 Redis 命令行工具 (redis-cli) 可通过以下步骤管理和操作 Redis:连接到服务器,指定地址和端口。使用命令名称和参数向服务器发送命令。使用 HELP 命令查看特定命令的帮助信息。使用 QUIT 命令退出命令行工具。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

WebStorm Mac版
好用的JavaScript开发工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器