本篇文章带大家了解一下递归,介绍一下PHP 7 中对递归的优化。
⒈ 递归
递归因其简洁、优雅的特性在编程中经常会被使用。递归的代码更具声明性和自我描述性。递归不需要像迭代那样解释如何获取值,而是在描述函数的最终结果。
以累加和斐波那契数列的实现为例:
- 迭代方式实现
// 累加函数 // 给定参数 n,求小于等于 n 的正整数的和 function sumBelow(int $n) { if ($n <= 0) { return 0; } $result = 0; for ($i = 1; $i <= $n; $i ++) { $result += $i; } return $result; } // 斐波那契数列 // 给定参数 n,取得斐波那契数列中第 n 项的值 // 这里用数组模拟斐波那契数列,斐波那契数列第一项为 1,第二项为 2,初始化数组 $arr = [1, 1],则斐波那契数列第 n 项的值为 $arr[n] = $arr[n-1] + $arr[n-2] function fib(int $n) { if ($n <= 0) { return false; } if ($n == 1) { return 1; } $arr = [1, 1]; for ($i = 2, $i <= $n; $i ++) { $arr[$i] = $arr[$i - 1] + $arr[$i - 2]; } return $arr[$n]; }
- 递归方式实现
// 累加函数 function sumBelow(int $n) { if ($n <= 1) { return 1; } return $n + sumBelow($n - 1); } // 斐波那契数列 function fib(int $n) { if ($n < 2) { return 1; } return fib($n - 1) + fib($n - 2); }
相比之下,递归的实现方式更简洁明了,可读性更强,更容易理解。
⒉ 递归存在的问题
程序中的函数调用,在底层通常需要遵循一定的调用约定(calling convention)。通常的过程是:
- 首先将函数的参数和返回地址入栈
- 然后 CPU 开始执行函数体中的代码
- 最后在函数执行完成之后销毁这块占空间,CPU 回到返回地址所指的位置
这个过程在低级语言(例如汇编)中非常快,因为低级语言直接与 CPU 交互,而 CPU 的运行速度非常快。在 x86_64 架构的 Linux 中,参数往往直接通过寄存器传递,内存中的栈空间会被预加载到 CPU 的缓存中,这样 CPU 反问栈空间会非常非常快。
同样的过程在高级语言(例如 PHP)中却截然不同。高级语言无法直接与 CPU 交互,需要借助虚拟机来虚拟化一套自身的堆、栈等概念。同时,还需要借助虚拟机来维护和管理这套虚拟化出来的堆栈。
高级语言中的函数调用过程相较于低级语言已经很慢,而递归会让这种情况雪上加霜。以上例中的累加函数为例,每到一个 sumBelow
,ZVM 都需要构造一个函数调用栈(具体调用栈的构造之前的文章已经讲过),随着 n 的增大,需要构造的调用栈会越来越多,最终导致内存溢出。相较于累加函数,斐波那契函数的递归会使得调用栈的数量呈现几何级数式的增加(因为每一个调用栈最终会新产生两个调用栈)。
⒊ 使用蹦床函数(trampoline)和尾调用(tail call)来优化递归
① 尾调用
尾调用指的是一个函数最后只返回对自身的调用,再没有其他的任何操作。由于函数返回的是对自身的调用,因此编译器可以复用当前的调用栈而不需要新建调用栈。
将前述的累加函数和斐波那契函数改为尾调用的实现方式,代码如下
// 累加函数的尾调用方式实现 function subBelow(int $n, int $sum = 1) { if ($n <= 1) { return $sum; } return subBelow($n - 1, $sum + $n); } // 斐波那契函数的尾调用实现 function fib(int $n, int $acc1 = 1, int $acc2 = 2) { if ($n < 2) { return $acc1; } return fib($n - 1, $acc1 + $acc2, $acc1); }
② 蹦床函数
累加函数相对简单,可以很方便的转换成尾调用的实现方式。斐波那契函数的尾调用实现方式就相对比较麻烦。但在实际应用中,很多递归夹杂着很多复杂的条件判断,在不同的条件下进行不同方式的递归。此时,无法直接把递归函数转换成尾调用的形式,需要借助蹦床函数。
所谓蹦床函数,其基本原理是将递归函数包装成迭代的形式。以累加函数为例,首先改写累加函数的实现方式:
function trampolineSumBelow(int $n, int $sum = 1) { if ($n <= 1) { return $sum; } return function() use ($n, $sum) { return trampolineSumBelow($n - 1, $sum + $n); }; }
在函数的最后并没有直接进行递归调用,而是把递归调用包装进了一个闭包,而闭包函数不会立即执行。此时需要借助蹦床函数,如果蹦床函数发现返回的是一个闭包,那么蹦床函数会继续执行返回的闭包,知道蹦床函数发现返回的是一个值。
function trampoline(callable $cloure, ...$args) { while (is_callable($cloure)) { $cloure = $cloure(...$args); } return $cloure; } echo trampoline('trampolineSumBelow', 100);
蹦床函数是一种比较通用的解决递归调用的问题的方式。在蹦床函数中,返回的闭包被以迭代的方式执行,避免了函数递归导致的内存溢出。
⒋ ZVM 中对递归的优化
在 PHP 7 中,通过尾调用的方式优化递归主要应用在对象的方法中。仍然以累加函数为例:
class Test { public function __construct(int $n) { $this->sum($n); } public function sum(int $n, int $sum = 1) { if ($n <= 1) { return $sum; } return $this->sum($n - 1, $sum + $n); } } $t = new Test($argv[1]); echo memory_get_peak_usage(true), PHP_EOL; // 经测试,在 $n <= 10000 的条件下,内存消耗的峰值恒定为 2M
以上代码对应的 OPCode 为:
// 主函数 L0: V2 = NEW 1 string("Test") L1: CHECK_FUNC_ARG 1 L2: V3 = FETCH_DIM_FUNC_ARG CV1($argv) int(1) L3: SEND_FUNC_ARG V3 1 L4: DO_FCALL L5: ASSIGN CV0($t) V2 L6: INIT_FCALL 1 96 string("memory_get_peak_usage") L7: SEND_VAL bool(true) 1 L8: V6 = DO_ICALL L9: ECHO V6 L10: ECHO string(" ") L11: RETURN int(1) // 构造函数 L0: CV0($n) = RECV 1 L1: INIT_METHOD_CALL 1 THIS string("sum") L2: SEND_VAR_EX CV0($n) 1 L3: DO_FCALL L4: RETURN null // 累加函数 L0: CV0($n) = RECV 1 L1: CV1($sum) = RECV_INIT 2 int(1) L2: T2 = IS_SMALLER_OR_EQUAL CV0($n) int(1) L3: JMPZ T2 L5 L4: RETURN CV1($sum) L5: INIT_METHOD_CALL 2 THIS string("sum") L6: T3 = SUB CV0($n) int(1) L7: SEND_VAL_EX T3 1 L8: T4 = ADD CV1($sum) CV0($n) L9: SEND_VAL_EX T4 2 L10: V5 = DO_FCALL L11: RETURN V5 L12: RETURN null
当 class 中的累加函数 sum
发生尾调用时执行的 OPCode 为 DO_FCALL
,对应的底层实现为:
# define ZEND_VM_CONTINUE() return # define LOAD_OPLINE() opline = EX(opline) # define ZEND_VM_ENTER() execute_data = EG(current_execute_data); LOAD_OPLINE(); ZEND_VM_INTERRUPT_CHECK(); ZEND_VM_CONTINUE() static ZEND_OPCODE_HANDLER_RET ZEND_FASTCALL ZEND_DO_FCALL_SPEC_RETVAL_USED_HANDLER(ZEND_OPCODE_HANDLER_ARGS) { USE_OPLINE zend_execute_data *call = EX(call); zend_function *fbc = call->func; zend_object *object; zval *ret; SAVE_OPLINE(); EX(call) = call->prev_execute_data; /* 判断所调用的方法是否为抽象方法或已废弃的函数 */ /* ... ... */ LOAD_OPLINE(); if (EXPECTED(fbc->type == ZEND_USER_FUNCTION)) { /* 所调用的方法为开发者自定义的方法 */ ret = NULL; if (1) { ret = EX_VAR(opline->result.var); ZVAL_NULL(ret); } call->prev_execute_data = execute_data; i_init_func_execute_data(call, &fbc->op_array, ret); if (EXPECTED(zend_execute_ex == execute_ex)) { /* zend_execute_ex == execute_ex 说明方法调用的是自身,发生递归*/ ZEND_VM_ENTER(); } else { ZEND_ADD_CALL_FLAG(call, ZEND_CALL_TOP); zend_execute_ex(call); } } else if (EXPECTED(fbc->type < ZEND_USER_FUNCTION)) { /* 内部方法调用 */ /* ... ... */ } else { /* ZEND_OVERLOADED_FUNCTION */ /* 重载的方法 */ /* ... ... */ } fcall_end: /* 异常判断以及相应的后续处理 */ /* ... ... */ zend_vm_stack_free_call_frame(call); /* 异常判断以及相应的后续处理 */ /* ... ... */ ZEND_VM_SET_OPCODE(opline + 1); ZEND_VM_CONTINUE(); }
从 DO_FCALL
的底层实现可以看出,当发生方法递归调用时(zend_execute_ex == execute_ex
),ZEND_VM_ENTER()
宏将 execute_data
转换为当前方法的 execute_data
,同时将 opline
又置为 execute_data
中的第一条指令,在检查完异常(ZEND_VM_INTERRUPT_CHECK()
)之后,返回然后重新执行方法。
通过蹦床函数的方式优化递归调用主要应用在对象的魔术方法 __call
、__callStatic
中。
class A { private function test($n) { echo "test $n", PHP_EOL; } public function __call($method, $args) { $this->$method(...$args); var_export($this); echo PHP_EOL; } } class B extends A { public function __call($method, $args) { (new parent)->$method(...$args); var_export($this); echo PHP_EOL; } } class C extends B { public function __call($method, $args) { (new parent)->$method(...$args); var_export($this); echo PHP_EOL; } } $c = new C(); //$c->test(11); echo memory_get_peak_usage(), PHP_EOL; // 经测试,仅初始化 $c 对象消耗的内存峰值为 402416 字节,调用 test 方法所消耗的内存峰值为 431536 字节
在对象中尝试调用某个方法时,如果该方法在当前对象中不存在或访问受限(protected
、private
),则会调用对象的魔术方法 __call
(如果通过静态调用的方式,则会调用 __callStatic
)。在 PHP 的底层实现中,该过程通过 zend_std_get_method
函数实现
static union _zend_function *zend_std_get_method(zend_object **obj_ptr, zend_string *method_name, const zval *key) { zend_object *zobj = *obj_ptr; zval *func; zend_function *fbc; zend_string *lc_method_name; zend_class_entry *scope = NULL; ALLOCA_FLAG(use_heap); if (EXPECTED(key != NULL)) { lc_method_name = Z_STR_P(key); #ifdef ZEND_ALLOCA_MAX_SIZE use_heap = 0; #endif } else { ZSTR_ALLOCA_ALLOC(lc_method_name, ZSTR_LEN(method_name), use_heap); zend_str_tolower_copy(ZSTR_VAL(lc_method_name), ZSTR_VAL(method_name), ZSTR_LEN(method_name)); } /* 所调用的方法在当前对象中不存在 */ if (UNEXPECTED((func = zend_hash_find(&zobj->ce->function_table, lc_method_name)) == NULL)) { if (UNEXPECTED(!key)) { ZSTR_ALLOCA_FREE(lc_method_name, use_heap); } if (zobj->ce->__call) { /* 当前对象存在魔术方法 __call */ return zend_get_user_call_function(zobj->ce, method_name); } else { return NULL; } } /* 所调用的方法为 protected 或 private 类型时的处理逻辑 */ /* ... ... */ } static zend_always_inline zend_function *zend_get_user_call_function(zend_class_entry *ce, zend_string *method_name) { return zend_get_call_trampoline_func(ce, method_name, 0); } ZEND_API zend_function *zend_get_call_trampoline_func(zend_class_entry *ce, zend_string *method_name, int is_static) { size_t mname_len; zend_op_array *func; zend_function *fbc = is_static ? ce->__callstatic : ce->__call; ZEND_ASSERT(fbc); if (EXPECTED(EG(trampoline).common.function_name == NULL)) { func = &EG(trampoline).op_array; } else { func = ecalloc(1, sizeof(zend_op_array)); } func->type = ZEND_USER_FUNCTION; func->arg_flags[0] = 0; func->arg_flags[1] = 0; func->arg_flags[2] = 0; func->fn_flags = ZEND_ACC_CALL_VIA_TRAMPOLINE | ZEND_ACC_PUBLIC; if (is_static) { func->fn_flags |= ZEND_ACC_STATIC; } func->opcodes = &EG(call_trampoline_op); func->prototype = fbc; func->scope = fbc->common.scope; /* reserve space for arguments, local and temorary variables */ func->T = (fbc->type == ZEND_USER_FUNCTION)? MAX(fbc->op_array.last_var + fbc->op_array.T, 2) : 2; func->filename = (fbc->type == ZEND_USER_FUNCTION)? fbc->op_array.filename : ZSTR_EMPTY_ALLOC(); func->line_start = (fbc->type == ZEND_USER_FUNCTION)? fbc->op_array.line_start : 0; func->line_end = (fbc->type == ZEND_USER_FUNCTION)? fbc->op_array.line_end : 0; //??? keep compatibility for "\0" characters //??? see: Zend/tests/bug46238.phpt if (UNEXPECTED((mname_len = strlen(ZSTR_VAL(method_name))) != ZSTR_LEN(method_name))) { func->function_name = zend_string_init(ZSTR_VAL(method_name), mname_len, 0); } else { func->function_name = zend_string_copy(method_name); } return (zend_function*)func; } static void zend_init_call_trampoline_op(void) { memset(&EG(call_trampoline_op), 0, sizeof(EG(call_trampoline_op))); EG(call_trampoline_op).opcode = ZEND_CALL_TRAMPOLINE; EG(call_trampoline_op).op1_type = IS_UNUSED; EG(call_trampoline_op).op2_type = IS_UNUSED; EG(call_trampoline_op).result_type = IS_UNUSED; ZEND_VM_SET_OPCODE_HANDLER(&EG(call_trampoline_op)); }
ZEND_CALL_TRAMPOLINE
的底层实现逻辑:
static ZEND_OPCODE_HANDLER_RET ZEND_FASTCALL ZEND_CALL_TRAMPOLINE_SPEC_HANDLER(ZEND_OPCODE_HANDLER_ARGS) { zend_array *args; zend_function *fbc = EX(func); zval *ret = EX(return_value); uint32_t call_info = EX_CALL_INFO() & (ZEND_CALL_NESTED | ZEND_CALL_TOP | ZEND_CALL_RELEASE_THIS); uint32_t num_args = EX_NUM_ARGS(); zend_execute_data *call; USE_OPLINE args = emalloc(sizeof(zend_array)); zend_hash_init(args, num_args, NULL, ZVAL_PTR_DTOR, 0); if (num_args) { zval *p = ZEND_CALL_ARG(execute_data, 1); zval *end = p + num_args; zend_hash_real_init(args, 1); ZEND_HASH_FILL_PACKED(args) { do { ZEND_HASH_FILL_ADD(p); p++; } while (p != end); } ZEND_HASH_FILL_END(); } SAVE_OPLINE(); call = execute_data; execute_data = EG(current_execute_data) = EX(prev_execute_data); ZEND_ASSERT(zend_vm_calc_used_stack(2, fbc->common.prototype) <= (size_t)(((char*)EG(vm_stack_end)) - (char*)call)); call->func = fbc->common.prototype; ZEND_CALL_NUM_ARGS(call) = 2; ZVAL_STR(ZEND_CALL_ARG(call, 1), fbc->common.function_name); ZVAL_ARR(ZEND_CALL_ARG(call, 2), args); zend_free_trampoline(fbc); fbc = call->func; if (EXPECTED(fbc->type == ZEND_USER_FUNCTION)) { if (UNEXPECTED(!fbc->op_array.run_time_cache)) { init_func_run_time_cache(&fbc->op_array); } i_init_func_execute_data(call, &fbc->op_array, ret); if (EXPECTED(zend_execute_ex == execute_ex)) { ZEND_VM_ENTER(); } else { ZEND_ADD_CALL_FLAG(call, ZEND_CALL_TOP); zend_execute_ex(call); } } else { /* ... ... */ } /* ... ... */ }
从 ZEND_CALL_TRAMPOLINE
的底层实现可以看出,当发生 __call
的递归调用时(上例中 class C
、class B
、class A
中依次发生 __call
的调用),ZEND_VM_ENTER
将 execute_data
和 opline
进行变换,然后重新执行。
递归之后还需要返回,返回的功能在 RETURN
中实现。所有的 PHP 代码在编译成 OPCode 之后,最后一条 OPCode 指令一定是 RETURN
(即使代码中没有 return
,编译时也会自动添加)。而在 ZEND_RETURN
中,最后一步要执行的操作为 zend_leave_helper
,递归的返回即时在这一步完成。
# define LOAD_NEXT_OPLINE() opline = EX(opline) + 1 # define ZEND_VM_CONTINUE() return # define ZEND_VM_LEAVE() ZEND_VM_CONTINUE() static ZEND_OPCODE_HANDLER_RET ZEND_FASTCALL zend_leave_helper_SPEC(ZEND_OPCODE_HANDLER_ARGS) { zend_execute_data *old_execute_data; uint32_t call_info = EX_CALL_INFO(); if (EXPECTED((call_info & (ZEND_CALL_CODE|ZEND_CALL_TOP|ZEND_CALL_HAS_SYMBOL_TABLE|ZEND_CALL_FREE_EXTRA_ARGS|ZEND_CALL_ALLOCATED)) == 0)) { /* ... ... */ LOAD_NEXT_OPLINE(); ZEND_VM_LEAVE(); } else if (EXPECTED((call_info & (ZEND_CALL_CODE|ZEND_CALL_TOP)) == 0)) { i_free_compiled_variables(execute_data); if (UNEXPECTED(call_info & ZEND_CALL_HAS_SYMBOL_TABLE)) { zend_clean_and_cache_symbol_table(EX(symbol_table)); } EG(current_execute_data) = EX(prev_execute_data); /* ... ... */ zend_vm_stack_free_extra_args_ex(call_info, execute_data); old_execute_data = execute_data; execute_data = EX(prev_execute_data); zend_vm_stack_free_call_frame_ex(call_info, old_execute_data); if (UNEXPECTED(EG(exception) != NULL)) { const zend_op *old_opline = EX(opline); zend_throw_exception_internal(NULL); if (RETURN_VALUE_USED(old_opline)) { zval_ptr_dtor(EX_VAR(old_opline->result.var)); } HANDLE_EXCEPTION_LEAVE(); } LOAD_NEXT_OPLINE(); ZEND_VM_LEAVE(); } else if (EXPECTED((call_info & ZEND_CALL_TOP) == 0)) { /* ... ... */ LOAD_NEXT_OPLINE(); ZEND_VM_LEAVE(); } else { /* ... ... */ } }
在 zend_leave_helper
中,execute_data
又被换成了 prev_execute_data
,然后继续执行新的 execute_data
的 opline
(注意:这里并没有将 opline
初始化为 execute_data
中 opline
的第一条 OPCode,而是接着之前执行到的位置继续执行下一条 OPCode)。
推荐学习:《PHP视频教程》
以上是看看PHP 7中怎么优化递归的!的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

Atom编辑器mac版下载
最流行的的开源编辑器

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中