搜索
首页常见问题详解alexnet网络结构

第一层卷积层1,卷积核的数量为96;第二层卷积层2,卷积的个数为256个;第三层卷积3, 输入为第二层的输出,卷积核个数为384;第四层卷积4,输入为第三层的输出,卷积核个数为384;第五层卷积5, 输入为第四层的输出,卷积核个数为256。

本教程操作环境:windows7系统、Dell G3电脑。

AlexNet网络,是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的。在那年之后,更多的更深的神经网路被提出,比如优秀的vgg,GoogleLeNet。其官方提供的数据模型,准确率达到57.1%,top 1-5 达到80.2%. 这项对于传统的机器学习分类算法而言,已经相当的出色.

在这里插入图片描述

网络结构解析

在这里插入图片描述

上图所示是caffe中alexnet的网络结构,采用是两台GPU服务器,所有会看到两个流程图。AlexNet的网络模型解读如下表:

在这里插入图片描述

在这里插入图片描述

解读如下:

第一层:卷积层1,输入为 224×224×3 224 \times 224 \times 3224×224×3的图像,卷积核的数量为96,论文中两片GPU分别计算48个核; 卷积核的大小为 11×11×3 11 \times 11 \times 311×11×3; stride = 4, stride表示的是步长, pad = 0, 表示不扩充边缘;卷积后的图形大小是怎样的呢?
wide = (224 + 2 * padding - kernel_size) / stride + 1 = 54height = (224 + 2 * padding - kernel_size) / stride + 1 = 54dimention = 96然后进行 (Local Response Normalized), 后面跟着池化pool_size = (3, 3), stride = 2, pad = 0 最终获得第一层卷积的feature map最终第一层卷积的输出为

第二层:卷积层2, 输入为上一层卷积的feature map, 卷积的个数为256个,论文中的两个GPU分别有128个卷积核。卷积核的大小为:5×5×48 5 \times 5 \times 485×5×48; pad = 2, stride = 1; 然后做 LRN, 最后 max_pooling, pool_size = (3, 3), stride = 2;
第三层:卷积3, 输入为第二层的输出,卷积核个数为384, kernel_size = (3×3×256 3 \times 3 \times 2563×3×256), padding = 1, 第三层没有做LRN和Pool

第四层:卷积4, 输入为第三层的输出,卷积核个数为384, kernel_size = (3×3 3 \times 33×3), padding = 1, 和第三层一样,没有LRN和Pool

第五层:卷积5, 输入为第四层的输出,卷积核个数为256, kernel_size = (3×3 3 \times 33×3), padding = 1。然后直接进行max_pooling, pool_size = (3, 3), stride = 2;第6,7,8层是全连接层,每一层的神经元的个数为4096,最终输出softmax为1000,因为上面介绍过,ImageNet这个比赛的分类个数为1000。全连接层中使用了RELU和Dropout。

用caffe 自带的绘图工具(caffe/python/draw_net.py) 和caffe/models/bvlc_alexnet/目录下面的train_val.prototxt绘制的网络结构图如下图:

python3 draw_net.py --rankdir TB ../models/bvlc_alexnet/train_val.prototxt AlexNet_structure.jpg

在这里插入图片描述

算法创新点

(1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过了Sigmoid,成功解决了Sigmoid在网络较深时的梯度弥散问题。虽然ReLU激活函数在很久之前就被提出了,但是直到AlexNet的出现才将其发扬光大。

(2)训练时使用Dropout随机忽略一部分神经元,以避免模型过拟合。Dropout虽有单独的论文论述,但是AlexNet将其实用化,通过实践证实了它的效果。在AlexNet中主要是最后几个全连接层使用了Dropout。

(3)在CNN中使用重叠的最大池化。此前CNN中普遍使用平均池化,AlexNet全部使用最大池化,避免平均池化的模糊化效果。并且AlexNet中提出让步长比池化核的尺寸小,这样池化层的输出之间会有重叠和覆盖,提升了特征的丰富性。

(4)提出了LRN层,对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力。

(5)多GPU训练,可以增大网络训练规模.

(6)百万级ImageNet数据图像输入.在AlexNet用到的Data Augmentation方式有三种:

平移变换(crop);

反射变换(flip);

光照和彩色变换(color jittering):先对图片进行随机平移,然后水平翻转.测试时,先对左上,右上,左下,右下和中间做5次平移变换,然后翻转之后对结果求平均.

归纳总结为:

  1. 使用ReLU激活函数;

  2. 提出Dropout防止过拟合;

  3. 使用数据扩充增强数据集(Data augmentation);

水平翻转图像、随机裁剪、平移变换、颜色变换、光照变换等

  1. 使用多GPU进行训练;

将上层的结果按照通道维度拆分为2份,分别送入2个GPU,如上一层输出的27×27×96的像素层(被分成两组27×27×48的像素层放在两个不同GPU中进行运算);

  1. LRN局部归一化的使用;

  2. 使用重叠池化(3*3的池化核)。

Caffe框架下训练

准备数据集,修改Alexnet网络的train.prototxt,配置solver,deploy.prototxt文件,新建train.sh脚本,即可开始训练。

更多计算机相关知识,请访问常见问题栏目!

以上是详解alexnet网络结构的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
deepseek网页版官方入口deepseek网页版官方入口Mar 12, 2025 pm 01:42 PM

国产AI黑马DeepSeek强势崛起,震撼全球AI界!这家成立仅一年半的中国人工智能公司,凭借其免费开源的大模型DeepSeek-V3和DeepSeek-R1,在性能上与OpenAI等国际巨头比肩,甚至在成本控制方面实现了突破性进展,赢得了全球用户的广泛赞誉。DeepSeek-R1现已全面上线,性能媲美OpenAIo1正式版!您可以在网页端、APP以及API接口体验其强大的功能。下载方式:支持iOS和安卓系统,用户可通过应用商店下载;网页版也已正式开放!DeepSeek网页版官方入口:ht

deepseek服务器繁忙怎么解决deepseek服务器繁忙怎么解决Mar 12, 2025 pm 01:39 PM

DeepSeek:火爆AI遭遇服务器拥堵,如何应对?DeepSeek作为2025年开年爆款AI,免费开源且性能媲美OpenAIo1正式版,其受欢迎程度可见一斑。然而,高并发也带来了服务器繁忙的问题。本文将分析原因并提供应对策略。DeepSeek网页版入口:https://www.deepseek.com/DeepSeek服务器繁忙的原因:高并发访问:DeepSeek的免费和强大功能吸引了大量用户同时使用,导致服务器负载过高。网络攻击:据悉,DeepSeek对美国金融界造成冲击,

深度求索deepseek官网入口深度求索deepseek官网入口Mar 12, 2025 pm 01:33 PM

2025年开年,国产AI“深度求索”(deepseek)惊艳亮相!这款免费开源的AI模型,性能堪比OpenAI的o1正式版,并已在网页端、APP和API全面上线,支持iOS、安卓和网页版多端同步使用。深度求索deepseek官网及使用指南:官网地址:https://www.deepseek.com/网页版使用步骤:点击上方链接进入deepseek官网。点击首页的“开始对话”按钮。首次使用需进行手机验证码登录。登录后即可进入对话界面。deepseek功能强大,可进行代码编写、文件读取、创

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具