本篇文章给大家介绍一下如何使用Redis实现一个安全可靠的分布式锁,说明分布式锁实现的主要要素,常见误区。有一定的参考价值,有需要的朋友可以参考一下,希望对大家有所帮助。
并发场景下多个进程或线程共享资源的读写,需要保证对资源的访问互斥。在单机系统中,我们可以使用Java并发包中的API、synchronized关键字等方式来解决;但是在分布式系统下,这些方式不再适用,我们需要自己实现分布式锁。
常见的分布式锁的实现方案有:基于数据库、基于Redis、基于Zookeeper等。作为Redis专题的一部分,本文将基于Redis聊一聊分布式锁的实现方案。【相关推荐:Redis视频教程】
分析与实现
问题分析
分布式锁与JVM内置的锁有着共同的目的:让应用程序以预期的顺序访问或操作共享的资源,防止多个线程同时对同一资源操作,导致系统运行紊乱、不可控。常常用于商品库存扣减、优惠券扣减等场景。
理论上来讲,为了保证锁的安全性和有效性,分布式锁至少需要满足以下条件:
- 互斥性:在同一时间内,仅有一个线程能够获得锁;
- 无死锁:线程获取锁后,必须保证能够释放,即使线程获取锁后应用程序宕机,也能在限定时间内释放;
- 加锁和解锁必须是同一个线程;
在实现方式上,分布式锁大体分为三个步骤:
- a-获取资源的操作权;
- b-对资源执行操作;
- c-释放资源的操作权;
无论是Java内置的锁,还是分布式锁,也无论使用哪种分布式实现方案,都是围绕a、c两个步骤展开。Redis对于实现分布式锁天然友好,原因如下:
- 命令处理阶段Redis使用单线程处理,同一个key同时只有一个线程能够处理,没有多线程竞态问题。
-
SET key value NX PX milliseconds
命令在不存在key的情况下添加具有过期时间的key,为安全加锁提供支持。 - Lua脚本和DEL命令为安全解锁提供可靠支撑。
代码实现
- Maven依赖
<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> <version>${your-spring-boot-version}</version> </dependency>
- 配置文件
在application.properties增加以下内容,单机版Redis实例。
spring.redis.database=0 spring.redis.host=localhost spring.redis.port=6379
- RedisConfig
@Configuration public class RedisConfig { // 自己定义了一个 RedisTemplate @Bean @SuppressWarnings("all") public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) throws UnknownHostException { // 我们为了自己开发方便,一般直接使用 <String, Object> RedisTemplate<String, Object> template = new RedisTemplate<String, Object>(); template.setConnectionFactory(factory); // Json序列化配置 Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class); ObjectMapper om = new ObjectMapper(); om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY); om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL); jackson2JsonRedisSerializer.setObjectMapper(om); // String 的序列化 StringRedisSerializer stringRedisSerializer = new StringRedisSerializer(); // key采用String的序列化方式 template.setKeySerializer(stringRedisSerializer); // hash的key也采用String的序列化方式 template.setHashKeySerializer(stringRedisSerializer); // value序列化方式采用jackson template.setValueSerializer(jackson2JsonRedisSerializer); // hash的value序列化方式采用jackson template.setHashValueSerializer(jackson2JsonRedisSerializer); template.afterPropertiesSet(); return template; } }
- RedisLock
@Service public class RedisLock { @Resource private RedisTemplate<String, Object> redisTemplate; /** * 加锁,最多等待maxWait毫秒 * * @param lockKey 锁定key * @param lockValue 锁定value * @param timeout 锁定时长(毫秒) * @param maxWait 加锁等待时间(毫秒) * @return true-成功,false-失败 */ public boolean tryAcquire(String lockKey, String lockValue, int timeout, long maxWait) { long start = System.currentTimeMillis(); while (true) { // 尝试加锁 Boolean ret = redisTemplate.opsForValue().setIfAbsent(lockKey, lockValue, timeout, TimeUnit.MILLISECONDS); if (!ObjectUtils.isEmpty(ret) && ret) { return true; } // 计算已经等待的时间 long now = System.currentTimeMillis(); if (now - start > maxWait) { return false; } try { Thread.sleep(200); } catch (Exception ex) { return false; } } } /** * 释放锁 * * @param lockKey 锁定key * @param lockValue 锁定value * @return true-成功,false-失败 */ public boolean releaseLock(String lockKey, String lockValue) { // lua脚本 String script = "if redis.call('get',KEYS[1]) == ARGV[1] then return redis.call('del',KEYS[1]) else return 0 end"; DefaultRedisScript<Long> redisScript = new DefaultRedisScript<>(script, Long.class); Long result = redisTemplate.opsForValue().getOperations().execute(redisScript, Collections.singletonList(lockKey), lockValue); return result != null && result > 0L; } }
- 测试用例
@SpringBootTest class RedisDistLockDemoApplicationTests { @Resource private RedisLock redisLock; @Test public void testLock() { redisLock.tryAcquire("abcd", "abcd", 5 * 60 * 1000, 5 * 1000); redisLock.releaseLock("abcd", "abcd"); } }
安全隐患
可能很多同学(也包括我)在日常工作中都是使用上面的实现方式,看似是稳妥的:
- 使用
set
命令NX
、PX
选项进行加锁,保证了加锁互斥,避免了死锁; - 使用lua脚本解锁,防止解除其他线程的锁;
- 加锁、解锁命令都是原子操作;
其实以上实现的稳妥有个前提条件:单机版Redis、开启AOF持久化方式并设置appendfsync=always
。
但是在哨兵模式和集群模式下可能存在问题,为什么呢?
哨兵模式和集群模式基于主从架构,主从之间通过命令传播实现数据同步,而命令传播是异步的。
所以就存在主节点数据写入成功,在还未通知从节点情况下,主节点就宕机的可能。
当从节点通过故障转移提升为新的主节点后,其他线程就有机会重新加锁成功,导致不满足分布式锁的互斥条件。
官方RedLock
集群模式下,若集群所有节点稳定运行,不出现故障转移的情况下,安全性是有保障的。但是,没有什么系统能够保证100%稳定,基于Redis的分布式锁必须考虑容错。
由于主从同步基于异步复制原理,所以哨兵模式和集群模式天生无法满足此条件。为此,Redis作者专门提出了一种解决方案——RedLock(Redis Distribute Lock)。
设计思路
根据官方文档的说明,把RedLock的设计思路进行介绍。
先说环境要求,需要N(N>=3)个独立部署的Redis实例,相互之间不需要主从复制、故障转移等技术。
为了获取锁,客户端将按照以下流程进行操作:
- 获取当前时间(毫秒)作为开始时间start;
- 使用相同的key和随机value,按顺序向所有N个节点发起获取锁的请求。当向每个实例设置锁时,客户端会使用一个过期时间(小于锁的自动释放时间)。比如锁的自动释放时间是10秒,这个超时时间应该是5-50毫秒。这是为了防止客户端在一个已经宕机的实例浪费太多时间:如果Redis实例宕机,客户端尽快处理下一个实例。
- 客户端计算加锁消耗的时间cost(cost=start-now)。只有客户端在半数以上实例加锁成功,并且整个耗时小于整个有效时间(ttl),才能认为当前客户端加锁成功。
- 如果客户端加锁成功,那么整个锁的真正有效时间应该是:validTime=ttl-cost。
- 如果客户端加锁失败(可能是获取锁成功实例数未过半,也可能是耗时超过ttl),那么客户端应该向所有实例尝试解锁(即使刚刚客户端认为加锁失败)。
RedLock的设计思路延续了Redis内部多种场景的投票方案,通过多个实例分别加锁解决竞态问题,虽然加锁消耗了时间,但是消除了主从机制下的安全问题。
代码实现
官方推荐Java实现为Redisson,它具备可重入特性,按照RedLock进行实现,支持独立实例模式、集群模式、主从模式、哨兵模式等;API比较简单,上手容易。示例如下(直接通过测试用例):
@Test public void testRedLock() throws InterruptedException { Config config = new Config(); config.useSingleServer().setAddress("redis://127.0.0.1:6379"); final RedissonClient client = Redisson.create(config); // 获取锁实例 final RLock lock = client.getLock("test-lock"); // 加锁 lock.lock(60 * 1000, TimeUnit.MILLISECONDS); try { // 假装做些什么事情 Thread.sleep(50 * 1000); } catch (Exception ex) { ex.printStackTrace(); } finally { //解锁 lock.unlock(); } }
Redisson封装的非常好,我们可以像使用Java内置的锁一样去使用,代码简洁的不能再少了。关于Redisson源码的分析,网上有很多文章大家可以找找看。
全文总结
分布式锁是我们研发过程中常用的的一种解决并发问题的方式,Redis是只是一种实现方式。
关键的是要弄清楚加锁、解锁背后的原理,以及实现分布式锁需要解决的核心问题,同时考虑我们所采用的中间件有什么特性可以支撑。了解这些后,实现起来就不是什么问题了。
学习了RedLock的思想,我们是不是也可以在自己的应用程序内实现了分布式锁呢?欢迎沟通!
更多编程相关知识,请访问:编程入门!!
以上是使用Redis实现一个安全可靠的分布式锁的详细内容。更多信息请关注PHP中文网其他相关文章!

REDISACTSASBOTHADATASTOREANDASERVICE.1)ASADATASTORE,ITUSESIN-MEMORYSTOOGATOFORFOFFASTESITION,支持VariousDatharptructuresLikeKey-valuepairsandsortedsetsetsetsetsetsetsets.2)asaservice,ItprovidespunctionslikeItionitionslikepunikeLikePublikePublikePlikePlikePlikeAndluikeAndluAascriptingiationsmpleplepleclexplectiations

Redis与其他数据库相比,具有以下独特优势:1)速度极快,读写操作通常在微秒级别;2)支持丰富的数据结构和操作;3)灵活的使用场景,如缓存、计数器和发布订阅。选择Redis还是其他数据库需根据具体需求和场景,Redis在高性能、低延迟应用中表现出色。

Redis在数据存储和管理中扮演着关键角色,通过其多种数据结构和持久化机制成为现代应用的核心。1)Redis支持字符串、列表、集合、有序集合和哈希表等数据结构,适用于缓存和复杂业务逻辑。2)通过RDB和AOF两种持久化方式,Redis确保数据的可靠存储和快速恢复。

Redis是一种NoSQL数据库,适用于大规模数据的高效存储和访问。1.Redis是开源的内存数据结构存储系统,支持多种数据结构。2.它提供极快的读写速度,适合缓存、会话管理等。3.Redis支持持久化,通过RDB和AOF方式确保数据安全。4.使用示例包括基本的键值对操作和高级的集合去重功能。5.常见错误包括连接问题、数据类型不匹配和内存溢出,需注意调试。6.性能优化建议包括选择合适的数据结构和设置内存淘汰策略。

Redis在现实世界中的应用包括:1.作为缓存系统加速数据库查询,2.存储Web应用的会话数据,3.实现实时排行榜,4.作为消息队列简化消息传递。Redis的多功能性和高性能使其在这些场景中大放异彩。

Redis脱颖而出是因为其高速、多功能性和丰富的数据结构。1)Redis支持字符串、列表、集合、散列和有序集合等数据结构。2)它通过内存存储数据,支持RDB和AOF持久化。3)从Redis6.0开始引入多线程处理I/O操作,提升了高并发场景下的性能。

RedisisclassifiedasaNoSQLdatabasebecauseitusesakey-valuedatamodelinsteadofthetraditionalrelationaldatabasemodel.Itoffersspeedandflexibility,makingitidealforreal-timeapplicationsandcaching,butitmaynotbesuitableforscenariosrequiringstrictdataintegrityo

Redis通过缓存数据、实现分布式锁和数据持久化来提升应用性能和可扩展性。1)缓存数据:使用Redis缓存频繁访问的数据,提高数据访问速度。2)分布式锁:利用Redis实现分布式锁,确保在分布式环境中操作的安全性。3)数据持久化:通过RDB和AOF机制保证数据安全性,防止数据丢失。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)