搜索
首页后端开发Python教程介绍python的matplotlib常用绘图函数

介绍python的matplotlib常用绘图函数

Jan 25, 2021 am 10:04 AM
matplotlibpython

介绍python的matplotlib常用绘图函数

免费学习推荐:python视频教程

matplotlib具有强大的绘图功能,但是语句琐碎,每次使用都需要一句一句书写未免太过麻烦。本文根据平时绘图经验总结了常用绘图函数,可以直接使用,非常方便

import matplotlib.pyplot as pltimport pandas as pdimport numpy as np
plt.rcParams['font.sans-serif']=['simhei']#用于正常显示中文标签plt.rcParams['axes.unicode_minus']=False#用于正常显示负号

1、利用含有多列数据的DataFrame表格绘图

def plot_cols(data,xlabel=None,ylabel=None,path_file=None,marker=True,len_xticks=10,save=False):
    """
    :param data:DataFrame,数据表格--行标题为横坐标,列标题为数据列
                Series,序列——行标题为横坐标,name为数据列
    :param xlabel: str,横坐标名称
    :param ylabel: str,纵坐标名称
    :param path_file: str,保存文件路径
    :param marker: bool,是否为每条线添加不同的标记
    :param len_xticks:int,横坐标显示的值个数
    :param save: bool,是否保存图片
    example:
        data=pd.DataFrame(np.random.random((100,3)),index=np.arange(100),columns=['a','b','c'])
        plot_cols(data,xlabel='指标',ylabel='指数')
    """
    data.index=data.index.astype(str)
    plt.figure(figsize=(12,8))
    markers=['.',',','o','v','^','<&#39;,&#39;>','1','2','3','4','s','p','*','h','H','+','x','D','d','|','_']#标记符号

    #如果是DataFrame表格形式,则画出多列;如果是Series,则画出单列
    if type(data) is pd.core.frame.DataFrame:
        #是否为每条线添加不同的符号
        if marker==False:
            for col in data.columns:
                plt.plot(data[col],marker='o',label=col)
        else:
            for col,marker_ in zip(data.columns,markers):
                plt.plot(data[col], marker=marker_, label=col)

    elif type(data) is pd.core.series.Series:
        plt.plot(data, marker='o', label=data.name)

    plt.legend(loc='best',fontsize='small')
    xticks=np.linspace(0,len(data),(len_xticks+1)).astype(int).tolist()[:-1]#被显示的横坐标刻度值的位置
    plt.xticks(data.index[xticks],rotation=270)
    plt.ylabel(ylabel,fontsize=15)
    plt.xlabel(xlabel,fontsize=15)
    plt.grid(True,alpha=0.2)
    if save==True:plt.savefig(path_file)if __name__=='__main__':
    x=np.arange(1,101)
    data = pd.DataFrame({'a':x*2+3,'b':x*3-4,'c':np.log(x)+9}, index=np.arange(100))
    plot_cols(data, xlabel='指标', ylabel='指数')

在这里插入图片描述

2、将含有两列的DataFrame表格数据作为双轴图

def plot_twins(data,col1,col2,xlabel=None,ylabel1=None,ylabel2=None,len_xticks=10,figsize=(10,6),save_path=None):
    """将含有两列的DataFrame表格数据作为双轴图
    :param data: DataFrame,含有两列的DataFrame表格数据
    :param col1: str,左图列标题
    :param col2: str,右图列标题
    :param xlabel: str,横轴标题
    :param ylabel1: str,左y轴标题
    :param ylabel2: str,右y轴标题
    :param len_xticks: int,显示的刻度个数
    :param figsize: turple,图大小
    :param save_path: str,图片保存路径。默认为None,不保存图片
    :return:
    example:
        x=np.arange(0,100)
        data=pd.DataFrame({'销售额(元)':3*x+np.random.random(100)*100,'增长率(%)':np.random.random(100)},index=pd.date_range('2015-01-23',periods=100,freq='D'))
        plot_twins(data,col1='销售额(元)',col2='增长率(%)',xlabel=None,ylabel1='销售额(元)',ylabel2='增长率(%)')
    """
    fig=plt.figure(figsize=figsize)#创建一块总画布
    # 将画板分为四行四列共16个单元格,(0, 0)表示从第一行第一列即第一个单元格开始画图,将第一行的三个单元格作为一个画块作画
    ax=plt.subplot2grid((1,1),(0,0),rowspan=1,colspan=1)

    plt.plot(data[col1],label=col1,color='r',marker='^')
    ax.legend(loc='upper right')#用于显示画布ax的图,切记用 loc= 表示位置
    ax.set_ylabel(ylabel1)
    xticks=np.linspace(0,len(data),(len_xticks+1)).astype(int).tolist()[:-1]#被显示的横坐标刻度值的位置
    ax.set_xticks(data.index[xticks])
    plt.xticks(rotation=270)

    twin=ax.twinx()
    plt.plot(data[col2],label=col2,color='y',marker='o')
    twin.legend(loc='upper left')
    twin.set_ylabel(ylabel2)
    ax.set_xlabel(xlabel)
    ax.grid(True,alpha=0.2)
    if save_path!=None: plt.savefig(save_path)if __name__=='__main__':
        x=np.arange(0,100)
        data=pd.DataFrame({'销售额(元)':3*x+np.random.random(100)*100,'增长率(%)':np.random.random(100)},index=pd.date_range('2015-01-23',periods=100,freq='D'))
        plot_twins(data,col1='销售额(元)',col2='增长率(%)',xlabel=None,ylabel1='销售额(元)',ylabel2='增长率(%)')

在这里插入图片描述

3、将DataFrame表格中的多列数据绘制成多个图

def plot_figs(data,xlabel=None,ylabels=None,save_path=None,len_xticks=5,length=10,width=3,intervals=1):
    """
    将DataFrame表格中的多列数据绘制成多个图
    :param data:DataFrame,含有多列的表格
    :param xlabel:str,横轴标题
    :param ylabels:list,各个图的纵轴标题
    :param path_save:str,图片保存路径。默认为None,不保存图片
    :param len_xticks: int,显示的刻度个数
    :param length:int,画板长度
    :param width:int,图画宽度
    :param intervals:int,图画之间间隔距离
    :return:
    example:
        data=pd.DataFrame(np.random.random((100,3)),index=np.arange(100),columns=['a','b','c'])
        plot_figs(data,xlabel='标号',ylabels=['a','b','c'])
    """

    cols=data.columns
    num_fig = len(data.columns)
    fig = plt.figure(figsize=(length, 4*num_fig))  # 创建一块总画布
    for i in range(0,num_fig):
        #i=2

        ax = plt.subplot2grid((num_fig*(width+intervals), 1), (i*(width+intervals), 0), rowspan=width,
                               colspan=1)  # 将画板分为四行四列共16个单元格,(0, 0)表示从第一行第一列即第一个单元格开始画图,将第一行的三个单元格作为一个画块作画

        ax.plot(data[cols[i]], label=cols[i])
        ax.legend(loc='upper right')  # 用于显示画布ax1的图,切记用 loc= 表示位置
        if ylabels!=None:ax.set_ylabel(ylabels[i])
        if xlabels!=None and i==(num_fig-1):ax.set_xlabel(xlabel)
        xticks = np.linspace(0, len(data), (len_xticks + 1)).astype(int).tolist()[:-1]  # 被显示的横坐标刻度值的位置
        ax.set_xticks(data.index[xticks])
        plt.grid(True,alpha=0.2)
    if save_path != None: plt.savefig(save_path)if __name__=='__main__':
    data=pd.DataFrame(np.random.random((100,3)),index=np.arange(100),columns=['a','b','c'])
    plot_figs(data,xlabel='标号',ylabels=['a','b','c'])

在这里插入图片描述

相关免费学习推荐:python教程(视频)

以上是介绍python的matplotlib常用绘图函数的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:CSDN。如有侵权,请联系admin@php.cn删除
Python的主要目的:灵活性和易用性Python的主要目的:灵活性和易用性Apr 17, 2025 am 12:14 AM

Python的灵活性体现在多范式支持和动态类型系统,易用性则源于语法简洁和丰富的标准库。1.灵活性:支持面向对象、函数式和过程式编程,动态类型系统提高开发效率。2.易用性:语法接近自然语言,标准库涵盖广泛功能,简化开发过程。

Python:多功能编程的力量Python:多功能编程的力量Apr 17, 2025 am 12:09 AM

Python因其简洁与强大而备受青睐,适用于从初学者到高级开发者的各种需求。其多功能性体现在:1)易学易用,语法简单;2)丰富的库和框架,如NumPy、Pandas等;3)跨平台支持,可在多种操作系统上运行;4)适合脚本和自动化任务,提升工作效率。

每天2小时学习Python:实用指南每天2小时学习Python:实用指南Apr 17, 2025 am 12:05 AM

可以,在每天花费两个小时的时间内学会Python。1.制定合理的学习计划,2.选择合适的学习资源,3.通过实践巩固所学知识,这些步骤能帮助你在短时间内掌握Python。

Python与C:开发人员的利弊Python与C:开发人员的利弊Apr 17, 2025 am 12:04 AM

Python适合快速开发和数据处理,而C 适合高性能和底层控制。1)Python易用,语法简洁,适用于数据科学和Web开发。2)C 性能高,控制精确,常用于游戏和系统编程。

Python:时间投入和学习步伐Python:时间投入和学习步伐Apr 17, 2025 am 12:03 AM

学习Python所需时间因人而异,主要受之前的编程经验、学习动机、学习资源和方法及学习节奏的影响。设定现实的学习目标并通过实践项目学习效果最佳。

Python:自动化,脚本和任务管理Python:自动化,脚本和任务管理Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python和时间:充分利用您的学习时间Python和时间:充分利用您的学习时间Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python:游戏,Guis等Python:游戏,Guis等Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境