搜索
首页后端开发Python教程安利大家一个Python大数据分析神器

安利大家一个Python大数据分析神器

Dec 30, 2020 pm 05:41 PM
python大数据数据分析

python视频教程栏目介绍一个大数据分析神器

安利大家一个Python大数据分析神器

推荐(免费):python视频教程

对于Pandas运行速度的提升方法,之前已经介绍过很多回了,里面经常提及Dask,很多朋友没接触过可能不太了解,今天就推荐一下这个神器。

1、什么是Dask?

PandasNumpy大家都不陌生了,代码运行后数据都加载到RAM中,如果数据集特别大,我们就会看到内存飙升。但有时要处理的数据并不适合RAM,这时候Dask来了。

Dask是开源免费的。它是与其他社区项目(如Numpy,Pandas和Scikit-Learn)协调开发的。

官方:https://dask.org/

Dask支持PandasDataFrameNumpyArray的数据结构,并且既可在本地计算机上运行,也可以扩展到在集群上运行。

基本上,只要编写一次代码,使用普通的Pythonic语法,就可在本地运行或部署到多节点集群上。这本身就是一个很牛逼的功能了,但这还不是最牛逼的。

我觉得Dask的最牛逼的功能是:它兼容大部分我们已经在用的工具,并且只需改动少量的代码,就可以利用自己笔记本电脑上已有的处理能力并行运行代码。而并行处理数据就意味着更少的执行时间,更少的等待时间和更多的分析时间。

下面这个就是Dask进行数据处理的大致流程。
2f4ca94ca802585132464ae7a20a3a8.png

2、Dask支持哪些现有工具?

这一点也是我比较看中的,因为Dask可以与Python数据处理和建模的库包兼容,沿用库包的API,这对于Python使用者来说学习成本是极低的。而像HadoopSpark这种大数据处理是有很高的学习门槛和时间成本的。

目前,Dask可支持pandasNumpySklearnXGBoostXArrayRAPIDS等等,光是这几项我觉得就足够用了,至少对于常用的数据处理、建模分析是完全覆盖得掉的。
a4d1fd2bd472fee604a99f03976a305.png

3、Dask安装

可以使用 conda 或者 pip,或从源代码安装dask

conda install dask

因为dask有很多依赖,所以为了快速安装也可用下面代码,将安装运行Dask所需的最少依赖关系集。

conda install dask-core

再有就是通过源来安装。

git clone https://github.com/dask/dask.git
cd dask
python -m pip install .

4、Dask如何使用?

Numpy、pandas

Dask引入了3个并行集合,它们可以存储大于RAM的数据,这些集合有DataFrameBagsArrays。这些集合类型中的每一个都能够使用在RAM和硬盘之间分区的数据,以及分布在群集中多个节点上的数据。

Dask的使用是非常清晰的,如果你使用NumPy数组,就从Dask数组开始,如果你使用Pandas DataFrame,就从Dask DataFrame开始,依此类推。

import dask.array as da
x = da.random.uniform(low=0, high=10, size=(10000, 10000),  # normal numpy code
                      chunks=(1000, 1000))  # break into chunks of size 1000x1000

y = x + x.T - x.mean(axis=0)  # Use normal syntax for high level algorithms

# DataFrames
import dask.dataframe as dd
df = dd.read_csv('2018-*-*.csv', parse_dates='timestamp',  # normal Pandas code
                 blocksize=64000000)  # break text into 64MB chunks

s = df.groupby('name').balance.mean()  # Use normal syntax for high level algorithms

# Bags / lists
import dask.bag as db
b = db.read_text('*.json').map(json.loads)
total = (b.filter(lambda d: d['name'] == 'Alice')
          .map(lambda d: d['balance'])
          .sum())

这些高级接口在略微变化的情况下复制了标准接口。对于原始项目中的大部分API,这些接口会自动为我们并行处理较大的数据集,实现上不是很复杂,对照Dask的doc文档即可一步步完成。

Delayed

下面说一下DaskDelay 功能,非常强大。

Dask.delayed是一种并行化现有代码的简单而强大的方法。之所以被叫做delayed是因为,它没有立即计算出结果,而是将要作为任务计算的结果记录在一个图形中,稍后将在并行硬件上运行。

有时问题用已有的dask.arraydask.dataframe可能都不适合,在这些情况下,我们可以使用更简单的dask.delayed界面并行化自定义算法。例如下面这个例子。

def inc(x):
    return x + 1

def double(x):
    return x * 2

def add(x, y):
    return x + y

data = [1, 2, 3, 4, 5]

output = []
for x in data:
    a = inc(x)
    b = double(x)
    c = add(a, b)
    output.append(c)

total = sum(output)
45

上面代码在单个线程中按顺序运行。但是,我们看到其中很多可以并行执行。Dask delayed函数可修饰incdouble这些函数,以便它们可延迟运行,而不是立即执行函数,它将函数及其参数放入计算任务图中。

我们简单修改代码,用delayed函数包装一下。

import dask

output = []
for x in data:
    a = dask.delayed(inc)(x)
    b = dask.delayed(double)(x)
    c = dask.delayed(add)(a, b)
    output.append(c)

total = dask.delayed(sum)(output)

代码运行后incdoubleaddsum都还没有发生,而是生成一个计算的任务图交给了total。然后我们用visualizatize看下任务图。

total.visualize()

d538c247ad8ab6ccd08d350e5b4c405.png

上图明显看到了并行的可能性,所以毫不犹豫,使用compute进行并行计算,这时才完成了计算。

>>> total.compute()
45

由于数据集较小无法比较时间,这里只介绍下使用方法,具体可自己动手实践下。

Sklearn机器学习

关于机器学习的并行化执行,由于内容较多,东哥会在另一篇文章展开。这里简单说下一下dask-learn

dask-learn项目是与Sklearn开发人员协作完成的。现在可实现并行化有Scikit-learnPipelineGridsearchCVRandomSearchCV以及这些的变体,它们可以更好地处理嵌套的并行操作。

因此,如果你将sklearn替换为dklearn,那么速度将会提升很多。

# from sklearn.grid_search import GridSearchCV
  from dklearn.grid_search import GridSearchCV
# from sklearn.pipeline import Pipeline
  from dklearn.pipeline import Pipeline
下面是一个使用Pipeline的示例,其中应用了PCA和逻辑回归。
from sklearn.datasets import make_classification

X, y = make_classification(n_samples=10000,
                           n_features=500,
                           n_classes=2,
                           n_redundant=250,
                           random_state=42)

from sklearn import linear_model, decomposition
from sklearn.pipeline import Pipeline
from dklearn.pipeline import Pipeline

logistic = linear_model.LogisticRegression()
pca = decomposition.PCA()
pipe = Pipeline(steps=[('pca', pca),
                       ('logistic', logistic)])


grid = dict(pca__n_components=[50, 100, 150, 250],
            logistic__C=[1e-4, 1.0, 10, 1e4],
            logistic__penalty=['l1', 'l2'])

# from sklearn.grid_search import GridSearchCV
from dklearn.grid_search import GridSearchCV

estimator = GridSearchCV(pipe, grid)

estimator.fit(X, y)

结果是:sklearn会在40秒钟左右执行此计算,而dask-learn替代品大约需要10秒钟。
另外,如果添加以下代码可以连接到集群,通过Client可以展示整个计算过程的dashboard,由Bokeh实现。

from dask.distributed import Client
c = Client('scheduler-address:8786')

28295caa28bee6b9ee03a735ce7d68f.png

5、总结

以上就是Dask的简单介绍,Dask的功能是非常强大的,且说明文档也非常全,既有示例又有解释。感兴趣的朋友可以自行去官网或者GitHub学习,东哥下次分享使用Dask进行机器学习的一些实例。

以上是安利大家一个Python大数据分析神器的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:segmentfault。如有侵权,请联系admin@php.cn删除
Python的科学计算中如何使用阵列?Python的科学计算中如何使用阵列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何处理同一系统上的不同Python版本?您如何处理同一系统上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通过使用pyenv、venv和Anaconda来管理不同的Python版本。1)使用pyenv管理多个Python版本:安装pyenv,设置全局和本地版本。2)使用venv创建虚拟环境以隔离项目依赖。3)使用Anaconda管理数据科学项目中的Python版本。4)保留系统Python用于系统级任务。通过这些工具和策略,你可以有效地管理不同版本的Python,确保项目顺利运行。

与标准Python阵列相比,使用Numpy数组的一些优点是什么?与标准Python阵列相比,使用Numpy数组的一些优点是什么?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基于基于duetoc的iMplation,2)2)他们的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函数函数函数函数构成和稳定性构成和稳定性的操作,制造

阵列的同质性质如何影响性能?阵列的同质性质如何影响性能?Apr 25, 2025 am 12:13 AM

数组的同质性对性能的影响是双重的:1)同质性允许编译器优化内存访问,提高性能;2)但限制了类型多样性,可能导致效率低下。总之,选择合适的数据结构至关重要。

编写可执行python脚本的最佳实践是什么?编写可执行python脚本的最佳实践是什么?Apr 25, 2025 am 12:11 AM

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

Numpy数组与使用数组模块创建的数组有何不同?Numpy数组与使用数组模块创建的数组有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,内存效率段

Numpy数组的使用与使用Python中的数组模块阵列相比如何?Numpy数组的使用与使用Python中的数组模块阵列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模块与Python中的数组有何关系?CTYPES模块与Python中的数组有何关系?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)