python视频教程栏目介绍PyTorch的安装指南
相关免费学习推荐:python视频教程
本博客主要介绍在 Anaconda
虚拟环境中创建 PyTorch
环境,默认已经安装成功 Anaconda
软件。
Anaconda Inpidual Edition
的官方下载链接:
https://www.anaconda.com/products/inpidual
按照自己的操作系统,选择需要的版本号,随后傻瓜式安装即可。具体的安装及使用可以参考以下链接:
https://blog.csdn.net/ITLearnHall/article/details/81708148
创建PyTorch的虚拟环境
在 【最近添加】 里面找到 Anaconda Prompt
并打开,依次输入以下命令:
# 创建名为 PyTorch_envs 的虚拟环境,并指定 Python 版本号为 python 3.8 conda create -n PyTorch_envs python=3.8 # 激活虚拟环境 PyTorch_envs conda activate PyTorch_envs # 退出虚拟环境 conda deactivate
虚拟环境中安装 PyTorch
打开PyTorch
官网,选择安装。【这里我们选择官网安装方式,其他的安装方式博主也尝试过,但是效果都不是很好,所以说最好还是按照官网的安装方式进行,毕竟羊毛出在羊身上嘛。】
按照官网的提示安装 PyTorch
,这里需要注意的是安装之前必须知道自己CUDA
版本号,这里可以参考链接
https://blog.csdn.net/qq_38295511/article/details/89223169
我自己的CUDA
版本号是10.1
,所以选择如图示。
安装方式建议选择pip
方式,操作系统根据自己的操作系统进行选择,这里不再进行赘述。【最好选择相对好一点的网络环境】如果下载速度非常慢的话,建议换源安装,注意指明版本号,具体的换源方式可以参考:
https://blog.csdn.net/Ginomica_xyx/article/details/109605629
验证 PyTorch 是否安装成功
官网 https://pytorch.org/get-started/locally/#windows-verification 也说明了验证方式:
如图所示,PyTorch
安装成功。
安装过程中可能出现的问题
import torch
出现
ImportError: numpy.core.multiarray failed to import
出错原因:numpy
的版本出现问题,导致不能与PyTorch
的版本进行匹配,具体为numpy
版本过低。
解决方案:升级numpy
的版本。激活环境后输入下面的命令:
conda upgrade numpy
End。
PyTorch 安装指南
本博客主要介绍在 Anaconda
虚拟环境中创建 PyTorch
环境,默认已经安装成功 Anaconda
软件。
Anaconda Inpidual Edition
的官方下载链接:
https://www.anaconda.com/products/inpidual
按照自己的操作系统,选择需要的版本号,随后傻瓜式安装即可。具体的安装及使用可以参考以下链接:
https://blog.csdn.net/ITLearnHall/article/details/81708148
创建PyTorch的虚拟环境
在 【最近添加】 里面找到 Anaconda Prompt
并打开,依次输入以下命令:
# 创建名为 PyTorch_envs 的虚拟环境,并指定 Python 版本号为 python 3.8 conda create -n PyTorch_envs python=3.8 # 激活虚拟环境 PyTorch_envs conda activate PyTorch_envs # 退出虚拟环境 conda deactivate
虚拟环境中安装 PyTorch
打开PyTorch
官网,选择安装。【这里我们选择官网安装方式,其他的安装方式博主也尝试过,但是效果都不是很好,所以说最好还是按照官网的安装方式进行,毕竟羊毛出在羊身上嘛。】
按照官网的提示安装 PyTorch
,这里需要注意的是安装之前必须知道自己CUDA
版本号,这里可以参考链接
https://blog.csdn.net/qq_38295511/article/details/89223169
我自己的CUDA
版本号是10.1
,所以选择如图示。
安装方式建议选择pip
方式,操作系统根据自己的操作系统进行选择,这里不再进行赘述。【最好选择相对好一点的网络环境】如果下载速度非常慢的话,建议换源安装,注意指明版本号,具体的换源方式可以参考:
https://blog.csdn.net/Ginomica_xyx/article/details/109605629
验证 PyTorch 是否安装成功
官网 https://pytorch.org/get-started/locally/#windows-verification 也说明了验证方式:
如图所示,PyTorch
安装成功。
安装过程中可能出现的问题
import torch
出现
ImportError: numpy.core.multiarray failed to import
出错原因:numpy
的版本出现问题,导致不能与PyTorch
的版本进行匹配,具体为numpy
版本过低。
解决方案:升级numpy
的版本。激活环境后输入下面的命令:
conda upgrade numpy
End。
以上是详解PyTorch 安装指南的详细内容。更多信息请关注PHP中文网其他相关文章!

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)