引用计数器为主、分代码回收和标记清除为辅
在Python的C源码中有一个名为refchain的环状双向链表,这个链表比较牛逼了,因为Python程序中一旦创建对象都会把这个对象添加到refchain这个链表中。也就是说他保存着所有的对象。
age = 18number = age # 对象18的引用计数器 + 1del age # 对象18的引用计数器 - 1def run(arg): print(arg) run(number) # 刚开始执行函数时,对象18引用计数器 + 1,当函数执行完毕之后,对象18引用计数器 - 1 。num_list = [11,22,number] # 对象18的引用计数器 + 1复制代码
基于引用计数器进行垃圾回收非常方便和简单,但他还是存在循环引用的问题,导致无法正常的回收一些数据,例如:
v1 = [11,22,33] # refchain中创建一个列表对象,由于v1=对象,所以列表引对象用计数器为1.v2 = [44,55,66] # refchain中再创建一个列表对象,因v2=对象,所以列表对象引用计数器为1.v1.append(v2) # 把v2追加到v1中,则v2对应的[44,55,66]对象的引用计数器加1,最终为2.v2.append(v1) # 把v1追加到v1中,则v1对应的[11,22,33]对象的引用计数器加1,最终为2.del v1 # 引用计数器-1del v2 # 引用计数器-1复制代码
标记清除:创建特殊链表专门用于保存 列表、元组、字典、集合、自定义类等对象,之后再去检查这个链表中的对象是否存在循环引用,如果存在则让双方的引用计数器均 - 1 。
分代回收:对标记清除中的链表进行优化,将那些可能存在循引用的对象拆分到3个链表,链表称为:0/1/2三代,每代都可以存储对象和阈值,当达到阈值时,就会对相应的链表中的每个对象做一次扫描,除循环引用各自减1并且销毁引用计数器为0的对象。
// 分代的C源码#define NUM_GENERATIONS 3struct gc_generation generations[NUM_GENERATIONS] = { /* PyGC_Head, threshold, count */ {{(uintptr_t)_GEN_HEAD(0), (uintptr_t)_GEN_HEAD(0)}, 700, 0}, // 0代 {{(uintptr_t)_GEN_HEAD(1), (uintptr_t)_GEN_HEAD(1)}, 10, 0}, // 1代 {{(uintptr_t)_GEN_HEAD(2), (uintptr_t)_GEN_HEAD(2)}, 10, 0}, // 2代};复制代码
特别注意:0代和1、2代的threshold和count表示的意义不同。
0代,count表示0代链表中对象的数量,threshold表示0代链表对象个数阈值,超过则执行一次0代扫描检查。 1代,count表示0代链表扫描的次数,threshold表示0代链表扫描的次数阈值,超过则执行一次1代扫描检查。 2代,count表示1代链表扫描的次数,threshold表示1代链表扫描的次数阈值,超过则执行一2代扫描检查。
根据C语言底层并结合图来讲解内存管理和垃圾回收的详细过程。
第一步:当创建对象age=19时,会将对象添加到refchain链表中。
第二步:当创建对象num_list = [11,22]时,会将列表对象添加到 refchain 和 generations 0代中。
第三步:新创建对象使generations的0代链表上的对象数量大于阈值700时,要对链表上的对象进行扫描检查。
当0代大于阈值后,底层不是直接扫描0代,而是先判断2、1是否也超过了阈值。
对拼接起来的链表在进行扫描时,主要就是剔除循环引用和销毁垃圾,详细过程为:
至此,垃圾回收的过程结束。
从上文大家可以了解到当对象的引用计数器为0时,就会被销毁并释放内存。而实际上他不是这么的简单粗暴,因为反复的创建和销毁会使程序的执行效率变低。Python中引入了“缓存机制”机制。
例如:引用计数器为0时,不会真正销毁对象,而是将他放到一个名为 free_list 的链表中,之后会再创建对象时不会在重新开辟内存,而是在free_list中将之前的对象来并重置内部的值来使用。
v1 = 3.14 # 开辟内存来存储float对象,并将对象添加到refchain链表。 print( id(v1) ) # 内存地址:4436033488 del v1 # 引用计数器-1,如果为0则在rechain链表中移除,不销毁对象,而是将对象添加到float的free_list. v2 = 9.999 # 优先去free_list中获取对象,并重置为9.999,如果free_list为空才重新开辟内存。 print( id(v2) ) # 内存地址:4436033488 # 注意:引用计数器为0时,会先判断free_list中缓存个数是否满了,未满则将对象缓存,已满则直接将对象销毁。复制代码
v1 = 38 # 去小数据池small_ints中获取38整数对象,将对象添加到refchain并让引用计数器+1。 print( id(v1)) #内存地址:4514343712 v2 = 38 # 去小数据池small_ints中获取38整数对象,将refchain中的对象的引用计数器+1。 print( id(v2) ) #内存地址:4514343712 # 注意:在解释器启动时候-5~256就已经被加入到small_ints链表中且引用计数器初始化为1, # 代码中使用的值时直接去small_ints中拿来用并将引用计数器+1即可。另外,small_ints中的数据引用计数器永远不会为0 # (初始化时就设置为1了),所以也不会被销毁。复制代码
v1 = "A" print( id(v1) ) # 输出:4517720496 del v1 v2 = "A" print( id(v1) ) # 输出:4517720496 # 除此之外,Python内部还对字符串做了驻留机制,针对只含有字母、数字、下划线的字符串(见源码Objects/codeobject.c),如果 # 内存中已存在则不会重新在创建而是使用原来的地址里(不会像free_list那样一直在内存存活,只有内存中有才能被重复利用)。 v1 = "asdfg" v2 = "asdfg" print(id(v1) == id(v2)) # 输出:True复制代码
list类型,维护的free_list数组最多可缓存80个list对象。
v1 = [11,22,33] print( id(v1) ) # 输出:4517628816del v1 v2 = ["你","好"] print( id(v2) ) # 输出:4517628816复制代码
v1 = (1,2) print( id(v1) )del v1 # 因元组的数量为2,所以会把这个对象缓存到free_list[2]的链表中。v2 = ("哈哈哈","Alex") # 不会重新开辟内存,而是去free_list[2]对应的链表中拿到一个对象来使用。print( id(v2) )复制代码
v1 = {"k1":123} print( id(v1) ) # 输出:4515998128 del v1 v2 = {"name":"哈哈哈","age":18,"gender":"男"} print( id(v1) ) # 输出:4515998128复制代码
C语言源码底层分析
相关免费学习推荐:python教程(视频)
以上是剖析Python垃圾回收机制的详细内容。更多信息请关注PHP中文网其他相关文章!