如何设计算法?下面本篇文章给大家分析一下常见的算法范式。有一定的参考价值,有需要的朋友可以参考一下,希望对大家有所帮助。
首先明确三个概念:
算法: 按步骤解决问题的过程。
范式: 思考问题的模式。
算法范式: 为问题构建高效解决方案的常规方法。
本文讨论一些常用的算法范式,例如
- 分治算法
- 动态规划
- 贪婪算法
- 回溯算法
分治法
在排序算法中,合并和快速排序这两种算法的共同点就是分而治之的算法。
分而治之是一种常见的算法设计,它的思路是把问题分解为与原始问题相似的较小子问题。通常以递归方式解决子问题,并结合子问题的解决方案来解决原始问题。
分治法的逻辑可以分为三个步骤:
- 将原始问题划分为较小的子问题。
- 通过递归解决子问题,解决完毕之后返回子问题的解决方案。
- 将子问题的解决方案合并为原始问题的解决方案。
分治法的例子:二叉搜索
下面是用分治实现的二叉搜索。
function binarySearchRecursive(array, value, low, high) { if (low <= high) { const mid = Math.floor((low + high) / 2); const element = array[mid]; if (element < value) { return binarySearchRecursive(array, value, mid + 1, high); } else if (element > value) { return binarySearchRecursive(array, value, low, mid - 1); } else { return mid; } } return null; } export function binarySearch(array, value) { const sortedArray = quickSort(array); const low = 0; const high = sortedArray.length - 1; return binarySearchRecursive(array, value, low, high); }
请注意,上面的 binarySearch
函数是供他人调用的,而 binarySearchRecursive
是实现分治法的地方。
动态规划法
动态规划是一种优化技术,用于通过把复杂问题分解为较小的子问题来解决。看上去很像是分治法,但动态规划不是把问题分解为独立的子问题然后再组合在一起,而是只把问题分解为独立的子问题。
算法逻辑分为三个步骤:
- 定义子问题。
- 重复解决子问题。
- 识别并解决基本问题。
动态规划案例:最小硬币找零问题
这是一个名为为硬币找零问题的常见面试题。硬币找零问题是给定找零的金额,找出可以用多少特定数量的硬币来找零的方式。最小硬币找零问题只是找到使用给定面额的钱所需的最少硬币数量。例如,如果需要找零 3 毛 7 分,则可以使用 1 个 2 分,1个 5 分,1 个 1 毛钱和1个 2 毛钱。
function minCoinChange(coins, amount) { const cache = []; const makeChange = (value) => { if (!value) { return []; } if (cache[value]) { return cache[value]; } let min = []; let newMin; let newAmount; for (let i = 0; i < coins.length; i++) { const coin = coins[i]; newAmount = value - coin; if (newAmount >= 0) { newMin = makeChange(newAmount); } if (newAmount >= 0 && (newMin.length < min.length - 1 || !min.length) && (newMin.length || !newAmount)) { min = [coin].concat(newMin); } } return (cache[value] = min); } return makeChange(amount); }
在上面的代码中,参数 coins
表示面额(在人民币中为 [1, 2, 5, 10, 20, 50])。为了防止重复计算,用到了一个 cache
。 makeChange
函数是递归实现的,它是一个内部函数,可以访问 cache
。
console.log(minCoinChange([1, 2, 5 10, 20], 37)); // => [2, 5, 10, 20] console.log(minCoinChange([1, 3, 4], 6)) // => [3, 3]
贪心算法
贪心算法与当前的最优解决方案相关,并试图找到一个全局的最佳方案。与动态规划不同,它不考虑全局。贪心算法倾向于简单直观,但可能不是整体最优的解决方案。
贪心算法案例:最小硬币找零问题
上面用动态规划解决的硬币问题也可以用贪心算法解决。这个解决方案的是否能得到最优解取决于所采用的面额。
function minCoinChange(coins, amount) { const change = []; let total = 0; for (let i = coins.length; i>= 0; i--) { const coin = coins[i]; while (total + coin <= amount) { change.push(coin); total += coin; } } return change; }
可以看到,贪心算法比动态规划的方案要简单得多。下面看一下同样的求解案例,来了解两者之间的区别:
console.log(minCoinChange([1, 2, 5 10, 20], 37)); // => [2, 5, 10, 20] console.log(minCoinChange([1, 3, 4], 6)) // => [4, 1, 1]
贪心算法给出了第一个问题的最优解,但第二个并不是最优解(应该是 [3,3]
)。
贪心算法比动态规划算法要简单而且更快,但是得到的有可能不是最优解。
回溯算法
回溯算法非常适合逐步查找和构建解决方案。
- 尝试以一种方式解决问题。
- 如果它不起作用,就回溯并重复步骤 1,直到找到合适的解决方案为止。
对于回溯算法,我会另写一篇文章来介绍更复杂的算法。究竟写什么我还没想好,也许是写一个对数独求解的程序,如果你对这个感兴趣,请关注我的公众号!
算法是永无止境的,希望本文能帮你了解一些常见的算法范式。
相关免费学习推荐:js视频教程
以上是如何设计算法?常见的算法范式介绍的详细内容。更多信息请关注PHP中文网其他相关文章!

JavaScript在现实世界中的应用包括服务器端编程、移动应用开发和物联网控制:1.通过Node.js实现服务器端编程,适用于高并发请求处理。2.通过ReactNative进行移动应用开发,支持跨平台部署。3.通过Johnny-Five库用于物联网设备控制,适用于硬件交互。

我使用您的日常技术工具构建了功能性的多租户SaaS应用程序(一个Edtech应用程序),您可以做同样的事情。 首先,什么是多租户SaaS应用程序? 多租户SaaS应用程序可让您从唱歌中为多个客户提供服务

本文展示了与许可证确保的后端的前端集成,并使用Next.js构建功能性Edtech SaaS应用程序。 前端获取用户权限以控制UI的可见性并确保API要求遵守角色库

JavaScript是现代Web开发的核心语言,因其多样性和灵活性而广泛应用。1)前端开发:通过DOM操作和现代框架(如React、Vue.js、Angular)构建动态网页和单页面应用。2)服务器端开发:Node.js利用非阻塞I/O模型处理高并发和实时应用。3)移动和桌面应用开发:通过ReactNative和Electron实现跨平台开发,提高开发效率。

JavaScript的最新趋势包括TypeScript的崛起、现代框架和库的流行以及WebAssembly的应用。未来前景涵盖更强大的类型系统、服务器端JavaScript的发展、人工智能和机器学习的扩展以及物联网和边缘计算的潜力。

JavaScript是现代Web开发的基石,它的主要功能包括事件驱动编程、动态内容生成和异步编程。1)事件驱动编程允许网页根据用户操作动态变化。2)动态内容生成使得页面内容可以根据条件调整。3)异步编程确保用户界面不被阻塞。JavaScript广泛应用于网页交互、单页面应用和服务器端开发,极大地提升了用户体验和跨平台开发的灵活性。

Python更适合数据科学和机器学习,JavaScript更适合前端和全栈开发。 1.Python以简洁语法和丰富库生态着称,适用于数据分析和Web开发。 2.JavaScript是前端开发核心,Node.js支持服务器端编程,适用于全栈开发。

JavaScript不需要安装,因为它已内置于现代浏览器中。你只需文本编辑器和浏览器即可开始使用。1)在浏览器环境中,通过标签嵌入HTML文件中运行。2)在Node.js环境中,下载并安装Node.js后,通过命令行运行JavaScript文件。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

记事本++7.3.1
好用且免费的代码编辑器

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。