下面由Redis教程栏目给大家介绍Redis6.0到底为何引入多线程?,希望对需要的朋友有所帮助!
作者简介:曾任职于阿里巴巴,每日优鲜等互联网公司,任技术总监。15年电商互联网经历。
一百天前Redis作者antirez在博客上(antirez.com)发布了一条重磅消息,Redis6.0正式发布了。其中最引人注目的改动就是,Redis6.0引入了多线程。
本文主要分两部分。首先我们先聊一下Redis6.0之前为什么采用单线程模型。然后再详细解释Redis6.0的多线程。
Redis6.0之前为什么采用单线程模型
严格地说,从Redis 4.0之后并不是单线程。除了主线程外,还有一些后台线程处理一些较为缓慢的操作,例如无用连接的释放、大 key 的删除等等。
单线程模型,为何性能那么高?
Redis作者从设计之初,进行了多方面的考虑。最终选择使用单线程模型来处理命令。之所以选择单线程模型,主要有如下几个重要原因:
Redis操作基于内存,绝大多数操作的性能瓶颈不在CPU
单线程模型,避免了线程间切换带来的性能开销
使用单线程模型也能并发的处理客户端的请求(多路复用I/O)
使用单线程模型,可维护性更高,开发,调试和维护的成本更低
上述第三个原因是Redis最终采用单线程模型的决定性因素,其他的两个原因都是使用单线程模型额外带来的好处,在这里我们会按顺序介绍上述的几个原因。
性能瓶颈不在CPU
下图是Redis官网对单线程模型的说明。大概意思是:Redis的瓶颈并不在CPU,它的主要瓶颈在于内存和网络。在Linux环境中,Redis每秒甚至可以提交100万次请求。
为什么说Redis的瓶颈不在CPU?
首先,Redis绝大部分操作是基于内存的,而且是纯kv(key-value)操作,所以命令执行速度非常快。我们可以大概理解成,redis中的数据存储在一张大HashMap中,HashMap的优势就是查找和写入的时间复杂度都是O(1)。Redis内部采用这种结构存储数据,就奠定了Redis高性能的基础。根据Redis官网描述,在理想情况下Redis每秒可以提交一百万次请求,每次请求提交所需的时间在纳秒的时间量级。既然每次的Redis操作都这么快,单线程就可以完全搞定了,那还何必要用多线程呢!
线程上下文切换问题
另外,多线程场景下会发生线程上下文切换。线程是由CPU调度的,CPU的一个核在一个时间片内只能同时执行一个线程,在CPU由线程A切换到线程B的过程中会发生一系列的操作,主要过程包括保存线程A的执行现场,然后载入线程B的执行现场,这个过程就是“线程上下文切换”。其中涉及线程相关指令的保存和恢复。
频繁的线程上下文切换可能会导致性能急剧下降,这会导致我们不仅没有提升处理请求的速度,反而降低了性能,这也是 Redis 对于多线程技术持谨慎态度的原因之一。
在Linux系统中可以使用vmstat命令来查看上下文切换的次数,下面是vmstat查看上下文切换次数的示例:
vmstat 1 表示每秒统计一次, 其中cs列就是指上下文切换的数目. 一般情况下, 空闲系统的上下文切换每秒在1500以下。
并行处理客户端的请求(I/O多路复用)
如上所述:Redis的瓶颈并不在CPU,它的主要瓶颈在于内存和网络。所谓内存瓶颈很好理解,Redis做为缓存使用时很多场景需要缓存大量数据,所以需要大量内存空间,这可以通过集群分片去解决,例如Redis自身的无中心集群分片方案以及Codis这种基于代理的集群分片方案。
对于网络瓶颈,Redis在网络I/O模型上采用了多路复用技术,来减少网络瓶颈带来的影响。很多场景中使用单线程模型并不意味着程序不能并发的处理任务。Redis 虽然使用单线程模型处理用户的请求,但是它却使用 I/O 多路复用技术“并行”处理来自客户端的多个连接,同时等待多个连接发送的请求。使用 I/O多路复用技术能极大地减少系统的开销,系统不再需要为每个连接创建专门的监听线程,避免了由于大量的线程创建带来的巨大性能开销。
下面我们详细解释一下多路复用I/O模型。为了能更充分理解,我们先了解几个基本概念。
Socket(套接字):Socket可以理解成,在两个应用程序进行网络通信时,分别在两个应用程序中的通信端点。通信时,一个应用程序将数据写入Socket,然后通过网卡把数据发送到另外一个应用程序的Socket中。我们平常所说的HTTP和TCP协议的远程通信,底层都是基于Socket实现的。5种网络IO模型也都要基于Socket实现网络通信。
阻塞与非阻塞:所谓阻塞,就是发出一个请求不能立刻返回响应,要等所有的逻辑全处理完才能返回响应。非阻塞反之,发出一个请求立刻返回应答,不用等处理完所有逻辑。
内核空间与用户空间:在Linux中,应用程序稳定性远远比不上操作系统程序,为了保证操作系统的稳定性,Linux区分了内核空间和用户空间。可以这样理解,内核空间运行操作系统程序和驱动程序,用户空间运行应用程序。Linux以这种方式隔离了操作系统程序和应用程序,避免了应用程序影响到操作系统自身的稳定性。这也是Linux系统超级稳定的主要原因。所有的系统资源操作都在内核空间进行,比如读写磁盘文件,内存分配和回收,网络接口调用等。所以在一次网络IO读取过程中,数据并不是直接从网卡读取到用户空间中的应用程序缓冲区,而是先从网卡拷贝到内核空间缓冲区,然后再从内核拷贝到用户空间中的应用程序缓冲区。对于网络IO写入过程,过程则相反,先将数据从用户空间中的应用程序缓冲区拷贝到内核缓冲区,再从内核缓冲区把数据通过网卡发送出去。
多路复用I/O模型,建立在多路事件分离函数select,poll,epoll之上。以Redis采用的epoll为例,在发起read请求前,先更新epoll的socket监控列表,然后等待epoll函数返回(此过程是阻塞的,所以说多路复用IO本质上也是阻塞IO模型)。当某个socket有数据到达时,epoll函数返回。此时用户线程才正式发起read请求,读取并处理数据。这种模式用一个专门的监视线程去检查多个socket,如果某个socket有数据到达就交给工作线程处理。由于等待Socket数据到达过程非常耗时,所以这种方式解决了阻塞IO模型一个Socket连接就需要一个线程的问题,也不存在非阻塞IO模型忙轮询带来的CPU性能损耗的问题。多路复用IO模型的实际应用场景很多,大家耳熟能详的Redis,Java NIO,以及Dubbo采用的通信框架Netty都采用了这种模型。
下图是基于epoll函数Socket编程的详细流程。
可维护性
我们知道,多线程可以充分利用多核CPU,在高并发场景下,能够减少因I/O等待带来的CPU损耗,带来很好的性能表现。不过多线程却是一把双刃剑,带来好处的同时,还会带来代码维护困难,线上问题难于定位和调试,死锁等问题。多线程模型中代码的执行过程不再是串行的,多个线程同时访问的共享变量如果处理不当也会带来诡异的问题。
我们通过一个例子,看一下多线程场景下发生的诡异现象。看下面的代码:
class MemoryReordering { int num = 0; boolean flag = false; public void set() { num = 1; //语句1 flag = true; //语句2 } public int cal() { if( flag == true) { //语句3 return num + num; //语句4 } return -1; } }
flag为true时,cal() 方法返回值是多少?很多人会说:这还用问吗!肯定返回2
结果可能会让你大吃一惊!上面的这段代码,由于语句1和语句2没有数据依赖性,可能会发生指令重排序,有可能编译器会把flag=true放到num=1的前面。此时set和cal方法分别在不同线程中执行,没有先后关系。cal方法,只要flag为true,就会进入if的代码块执行相加的操作。可能的顺序是:
语句1先于语句2执行,这时的执行顺序可能是:语句1->语句2->语句3->语句4。执行语句4前,num = 1,所以cal的返回值是2
语句2先于语句1执行,这时的执行顺序可能是:语句2->语句3->语句4->语句1。执行语句4前,num = 0,所以cal的返回值是0
我们可以看到,在多线程环境下如果发生了指令重排序,会对结果造成严重影响。
当然可以在第三行处,给flag加上关键字volatile来避免指令重排。即在flag处加上了内存栅栏,来阻隔flag(栅栏)前后的代码的重排序。当然多线程还会带来可见性问题,死锁问题以及共享资源安全等问题。
boolean volatile flag = false;
Redis6.0为何引入多线程?
Redis6.0引入的多线程部分,实际上只是用来处理网络数据的读写和协议解析,执行命令仍然是单一工作线程。
从上图我们可以看到Redis在处理网络数据时,调用epoll的过程是阻塞的,也就是说这个过程会阻塞线程,如果并发量很高,达到几万的QPS,此处可能会成为瓶颈。一般我们遇到此类网络IO瓶颈的问题,可以增加线程数来解决。开启多线程除了可以减少由于网络I/O等待造成的影响,还可以充分利用CPU的多核优势。Redis6.0也不例外,在此处增加了多线程来处理网络数据,以此来提高Redis的吞吐量。当然相关的命令处理还是单线程运行,不存在多线程下并发访问带来的种种问题。
性能对比
压测配置:
Redis Server: 阿里云 Ubuntu 18.04,8 CPU 2.5 GHZ, 8G 内存,主机型号 ecs.ic5.2xlarge Redis Benchmark Client: 阿里云 Ubuntu 18.04,8 2.5 GHZ CPU, 8G 内存,主机型号 ecs.ic5.2xlarge
多线程版本Redis 6.0,单线程版本是 Redis 5.0.5。多线程版本需要新增以下配置:
io-threads 4 # 开启 4 个 IO 线程 io-threads-do-reads yes # 请求解析也是用 IO 线程
压测命令: redis-benchmark -h 192.168.0.49 -a foobared -t set,get -n 1000000 -r 100000000 --threads 4 -d ${datasize} -c 256
图片来源于网络
图片来源于网络
从上面可以看到 GET/SET 命令在多线程版本中性能相比单线程几乎翻了一倍。另外,这些数据只是为了简单验证多线程 I/O 是否真正带来性能优化,并没有针对具体的场景进行压测,数据仅供参考。本次性能测试基于 unstble 分支,不排除后续发布的正式版本的性能会更好。
最后
可见单线程有单线程的好处,多线程有多线程的优势,只有充分理解其中的本质原理,才能灵活运用于生产实践当中。
以上是Redis6.0到底为何引入多线程?的详细内容。更多信息请关注PHP中文网其他相关文章!

Redis的核心功能是高性能的内存数据存储和处理系统。1)高速数据访问:Redis将数据存储在内存中,提供微秒级别的读写速度。2)丰富的数据结构:支持字符串、列表、集合等,适应多种应用场景。3)持久化:通过RDB和AOF方式将数据持久化到磁盘。4)发布订阅:可用于消息队列或实时通信系统。

Redis支持多种数据结构,具体包括:1.字符串(String),适合存储单一值数据;2.列表(List),适用于队列和栈;3.集合(Set),用于存储不重复数据;4.有序集合(SortedSet),适用于排行榜和优先级队列;5.哈希表(Hash),适合存储对象或结构化数据。

Redis计数器是一种使用Redis键值对存储来实现计数操作的机制,包含以下步骤:创建计数器键、增加计数、减少计数、重置计数和获取计数。Redis计数器的优势包括速度快、高并发、持久性和简单易用。它可用于用户访问计数、实时指标跟踪、游戏分数和排名以及订单处理计数等场景。

使用 Redis 命令行工具 (redis-cli) 可通过以下步骤管理和操作 Redis:连接到服务器,指定地址和端口。使用命令名称和参数向服务器发送命令。使用 HELP 命令查看特定命令的帮助信息。使用 QUIT 命令退出命令行工具。

Redis集群模式通过分片将Redis实例部署到多个服务器,提高可扩展性和可用性。搭建步骤如下:创建奇数个Redis实例,端口不同;创建3个sentinel实例,监控Redis实例并进行故障转移;配置sentinel配置文件,添加监控Redis实例信息和故障转移设置;配置Redis实例配置文件,启用集群模式并指定集群信息文件路径;创建nodes.conf文件,包含各Redis实例的信息;启动集群,执行create命令创建集群并指定副本数量;登录集群执行CLUSTER INFO命令验证集群状态;使

要从 Redis 读取队列,需要获取队列名称、使用 LPOP 命令读取元素,并处理空队列。具体步骤如下:获取队列名称:以 "queue:" 前缀命名,如 "queue:my-queue"。使用 LPOP 命令:从队列头部弹出元素并返回其值,如 LPOP queue:my-queue。处理空队列:如果队列为空,LPOP 返回 nil,可先检查队列是否存在再读取元素。

Redis 集群中使用 zset:zset 是一种有序集合,将元素与评分关联。分片策略: a. 哈希分片:根据 zset 键的哈希值分布。 b. 范围分片:根据元素评分划分为范围,并将每个范围分配给不同的节点。读写操作: a. 读操作:如果 zset 键属于当前节点的分片,则在本地处理;否则,路由到相应的分片。 b. 写入操作:始终路由到持有 zset 键的分片。

如何清空 Redis 数据:使用 FLUSHALL 命令清除所有键值。使用 FLUSHDB 命令清除当前选定数据库的键值。使用 SELECT 切换数据库,再使用 FLUSHDB 清除多个数据库。使用 DEL 命令删除特定键。使用 redis-cli 工具清空数据。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

Dreamweaver CS6
视觉化网页开发工具

WebStorm Mac版
好用的JavaScript开发工具