Python最大的优点之一就是语法简洁,好的代码就像伪代码一样,干净、整洁、一目了然。要写出 Pythonic(优雅的、地道的、整洁的)代码,需要多看多学大牛们写的代码,github 上有很多非常优秀的源代码值得阅读,比如:requests、flask、tornado,下面列举一些常见的Pythonic写法。
相关学习推荐:python视频教程
0. 程序必须先让人读懂,然后才能让计算机执行。
“Programs must be written for people to read, and only incidentally for machines to execute.”
1. 交换赋值
##不推荐 temp = a a = b b = a ##推荐 a, b = b, a # 先生成一个元组(tuple)对象,然后unpack
2. Unpacking
##不推荐 l = ['David', 'Pythonista', '+1-514-555-1234'] first_name = l[0] last_name = l[1] phone_number = l[2] ##推荐 l = ['David', 'Pythonista', '+1-514-555-1234'] first_name, last_name, phone_number = l # Python 3 Only first, *middle, last = another_list
3. 使用操作符in
##不推荐 if fruit == "apple" or fruit == "orange" or fruit == "berry": # 多次判断 ##推荐 if fruit in ["apple", "orange", "berry"]: # 使用 in 更加简洁
4. 字符串操作
##不推荐 colors = ['red', 'blue', 'green', 'yellow'] result = '' for s in colors: result += s # 每次赋值都丢弃以前的字符串对象, 生成一个新对象 ##推荐 colors = ['red', 'blue', 'green', 'yellow'] result = ''.join(colors) # 没有额外的内存分配
5. 字典键值列表
##不推荐 for key in my_dict.keys(): # my_dict[key] ... ##推荐 for key in my_dict: # my_dict[key] ... # 只有当循环中需要更改key值的情况下,我们需要使用 my_dict.keys() # 生成静态的键值列表。
6. 字典键值判断
##不推荐 if my_dict.has_key(key): # ...do something with d[key] ##推荐 if key in my_dict: # ...do something with d[key]
7. 字典 get 和 setdefault 方法
##不推荐 navs = {} for (portfolio, equity, position) in data: if portfolio not in navs: navs[portfolio] = 0 navs[portfolio] += position * prices[equity] ##推荐 navs = {} for (portfolio, equity, position) in data: # 使用 get 方法 navs[portfolio] = navs.get(portfolio, 0) + position * prices[equity] # 或者使用 setdefault 方法 navs.setdefault(portfolio, 0) navs[portfolio] += position * prices[equity]
8. 判断真伪
##不推荐 if x == True: # .... if len(items) != 0: # ... if items != []: # ... ##推荐 if x: # .... if items: # ...
9. 遍历列表以及索引
##不推荐 items = 'zero one two three'.split() # method 1 i = 0 for item in items: print i, item i += 1 # method 2 for i in range(len(items)): print i, items[i] ##推荐 items = 'zero one two three'.split() for i, item in enumerate(items): print i, item
10. 列表推导
##不推荐 new_list = [] for item in a_list: if condition(item): new_list.append(fn(item)) ##推荐 new_list = [fn(item) for item in a_list if condition(item)]
11. 列表推导-嵌套
##不推荐 for sub_list in nested_list: if list_condition(sub_list): for item in sub_list: if item_condition(item): # do something... ##推荐 gen = (item for sl in nested_list if list_condition(sl) \ for item in sl if item_condition(item)) for item in gen: # do something...
12. 循环嵌套
##不推荐 for x in x_list: for y in y_list: for z in z_list: # do something for x & y ##推荐 from itertools import product for x, y, z in product(x_list, y_list, z_list): # do something for x, y, z
13. 尽量使用生成器代替列表
##不推荐 def my_range(n): i = 0 result = [] while i < n: result.append(fn(i)) i += 1 return result # 返回列表 ##推荐 def my_range(n): i = 0 result = [] while i < n: yield fn(i) # 使用生成器代替列表 i += 1 *尽量用生成器代替列表,除非必须用到列表特有的函数。
14. 中间结果尽量使用imap/ifilter代替map/filter
##不推荐 reduce(rf, filter(ff, map(mf, a_list))) ##推荐 from itertools import ifilter, imap reduce(rf, ifilter(ff, imap(mf, a_list))) *lazy evaluation 会带来更高的内存使用效率,特别是当处理大数据操作的时候。
15. 使用any/all函数
##不推荐 found = False for item in a_list: if condition(item): found = True break if found: # do something if found... ##推荐 if any(condition(item) for item in a_list): # do something if found...
16. 属性(property)
##不推荐 class Clock(object): def __init__(self): self.__hour = 1 def setHour(self, hour): if 25 > hour > 0: self.__hour = hour else: raise BadHourException def getHour(self): return self.__hour ##推荐 class Clock(object): def __init__(self): self.__hour = 1 def __setHour(self, hour): if 25 > hour > 0: self.__hour = hour else: raise BadHourException def __getHour(self): return self.__hour hour = property(__getHour, __setHour)
17. 使用 with 处理文件打开
##不推荐 f = open("some_file.txt") try: data = f.read() # 其他文件操作.. finally: f.close() ##推荐 with open("some_file.txt") as f: data = f.read() # 其他文件操作...
18. 使用 with 忽视异常(仅限Python 3)
##不推荐 try: os.remove("somefile.txt") except OSError: pass ##推荐 from contextlib import ignored # Python 3 only with ignored(OSError): os.remove("somefile.txt")
19. 使用 with 处理加锁
##不推荐 import threading lock = threading.Lock() lock.acquire() try: # 互斥操作... finally: lock.release() ##推荐 import threading lock = threading.Lock() with lock: # 互斥操作...
相关推荐:编程视频课程
以上是掌握python 19个值得学习的编程技巧的详细内容。更多信息请关注PHP中文网其他相关文章!

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

SublimeText3汉化版
中文版,非常好用

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具