广度优先遍历类似于二叉树的层次遍历。广度优先搜索是从根结点开始沿着树的宽度搜索遍历,也就是按层次的去遍历;从上往下对每一层依次访问,在每一层中,从左往右(也可以从右往左)访问结点,访问完一层就进入下一层,直到没有结点可以访问为止。
广度优先搜索(Breadth First Search)(其实是二叉树的层次遍历),又叫宽度优先搜索或横向优先搜索,是从根结点开始沿着树的宽度搜索遍历。
从上往下对每一层依次访问,在每一层中,从左往右(也可以从右往左)访问结点,访问完一层就进入下一层,直到没有结点可以访问为止。
上面二叉树的遍历顺序为:ABCDEFG. 可以利用队列实现广度优先搜索。
广度优先搜索算法:
保留全部结点,占用空间大; 无回溯操作(即无入栈、出栈操作),运行速度快。
广度优先搜索算法,一般需存储产生的所有结点,占用的存储空间要比深度优先搜索大得多,因此,程序设计中,必须考虑溢出和节省内存空间的问题。但广度优先搜索法一般无回溯操作,即入栈和出栈的操作,所以运行速度比深度优先搜索要快些。
示例:
其过程检验来说是对每一层节点依次访问,访问完一层进入下一层,而且每个节点只能访问一次。对于上面的例子来说,广度优先遍历的 结果是:A,B,C,D,E,F,G,H,I(假设每层节点从左到右访问)。
广度优先遍历各个节点,需要使用到队列(Queue)这种数据结构,queue的特点是先进先出,其实也可以使用双端队列,区别就是双端队列首位都可以插入和弹出节点。整个遍历过程如下:
首先将A节点插入队列中,queue(A);
将A节点弹出,同时将A的子节点B,C插入队列中,此时B在队列首,C在队列尾部,queue(B,C);
将B节点弹出,同时将B的子节点D,E插入队列中,此时C在队列首,E在队列尾部,queue(C,D,E);
将C节点弹出,同时将C的子节点F,G,H插入队列中,此时D在队列首,H在队列尾部,queue(D,E,F,G,H);
将D节点弹出,D没有子节点,此时E在队列首,H在队列尾部,queue(E,F,G,H);
...依次往下,最终遍历完成
Java代码大概如下:
public class TreeNode { int val = 0; TreeNode left = null; TreeNode right = null; public TreeNode(int val) { this.val = val; } } public class Solution { public ArrayList<Integer> wide(TreeNode root) { ArrayList<Integer> lists=new ArrayList<Integer>(); if(root==null) return lists; Queue<TreeNode> queue=new LinkedList<TreeNode>(); queue.offer(root); while(!queue.isEmpty()){ TreeNode node = queue.poll(); if(node.left!=null){ queue.offer(node.left); } if(node.right!=null){ queue.offer(node.right); } lists.add(node.val); } return lists; } }
更多相关知识,请访问:PHP中文网!
以上是广度优先遍历类似于二叉树的什么遍历?的详细内容。更多信息请关注PHP中文网其他相关文章!