二叉树有五种基本形态,分别是:1、空二叉树;2、只有一个根结点的二叉树;3、只有左子树;4、只有右子树;5、完全二叉树。
二叉树有五种基本形态
1)空二叉树:空树;
2)只有一个根结点的二叉树:只有根的树,即单结点;
3)只有左子树:有根且有一个左子树;
4)只有右子树:有根且有一个右子树;
5)完全二叉树:有根且有一个左子树,有一个右子树。
特殊类型:
1、满二叉树:如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。
2、完全二叉树:深度为k,有n个结点的二叉树当且仅当其每一个结点都与深度为k,有n个结点的满二叉树中编号从1到n的结点一一对应时,称为完全二叉树 。
完全二叉树的特点是叶子结点只可能出现在层序最大的两层上,并且某个结点的左分支下子孙的最大层序与右分支下子孙的最大层序相等或大1。
二叉树(Binary tree)是树形结构的一个重要类型。许多实际问题抽象出来的数据结构往往是二叉树形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。二叉树特点是每个结点最多只能有两棵子树,且有左右之分。
二叉树是n个有限元素的集合,该集合或者为空、或者由一个称为根(root)的元素及两个不相交的、被分别称为左子树和右子树的二叉树组成,是有序树。当集合为空时,称该二叉树为空二叉树。在二叉树中,一个元素也称作一个结点
更多相关知识,请访问 PHP中文网!!
以上是二叉树有几种基本形态?的详细内容。更多信息请关注PHP中文网其他相关文章!