首页  >  文章  >  web前端  >  JavaScript中二叉树,动态规划和回溯法(案例分析)

JavaScript中二叉树,动态规划和回溯法(案例分析)

angryTom
angryTom转载
2019-11-28 13:21:242292浏览

写的比较匆忙,测试用例是能全部跑通的,不过考虑内存和效率的话,还有许多需要改进的地方,所以请多指教

JavaScript中二叉树,动态规划和回溯法(案例分析)

题目描述

给定一个二叉树,根节点为第1层,深度为 1。在其第 d 层追加一行值为 v 的节点。

添加规则:给定一个深度值 d (正整数),针对深度为 d-1 层的每一非空节点 N,为 N 创建两个值为 v 的左子树和右子树。

将 N 原先的左子树,连接为新节点 v 的左子树;

将 N 原先的右子树,连接为新节点 v 的右子树。

如果 d 的值为 1,深度 d - 1 不存在,则创建一个新的根节点 v,原先的整棵树将作为 v 的左子树。

Example

【相关课程推荐:JavaScript视频教程】  

Input: 
A binary tree as following:       4
     /   \    2     6
   / \   / 
  3   1 5   v = 1d = 2Output: 
       4
      / \     1   1
    /     \   2       6
  / \     / 
 3   1   5

基本思想

二叉树的先序遍历 

代码的基本结构

不是最终结构,而是大体的结构

/**
 * @param {number} cd:current depth,递归当前深度
 * @param {number} td:target depth, 目标深度
 */
var traversal = function (node, v, cd, td) {
    // 递归到目标深度,创建新节点并返回
  if (cd === td) {
    // return 新节点
  }
  // 向左子树递归
  if (node.left) {
    node.left = traversal (node.left, v, cd + 1, td);
  }
  // 向右子树递归
  if (node.right) {
    node.right = traversal (node.right, v, cd + 1, td);
  }
  // 返回旧节点
  return node;
};
/**
 * Definition for a binary tree node.
 * function TreeNode(val) {
 *     this.val = val;
 *     this.left = this.right = null;
 * }
 */
/**
 * @param {TreeNode} root
 * @param {number} v
 * @param {number} d
 * @return {TreeNode}
 */
var addOneRow = function (root, v, td) {
    // 从根节点开始递归
  traversal (root, v, 1, td);
  return root;
};

具体分析

我们可以分类讨论,分三种情况处理

第1种情况:目标深度<=当前递归路径的最大深度

处理方法:val节点替换该目标深度对应的节点,并且

● 如果目标节点原来是左子树,那么重置后目标节点是val节点的左子树

● 如果目标节点原来是右子树,那么重置后目标节点是val节点的右子树

第2种情况:目标深度>当前递归路径的最大深度

阅读题目发现,有这么一个描述:“输入的深度值 d 的范围是:[1,二叉树最大深度 + 1]”

所以呢,当目标深度恰好比当前路径的树的深度再深一层时,处理方式是:

在最底下那一层节点的左右分支新增val节点

第3种情况:目标深度为1

我们再分析题意,题目里说:“如果 d 的值为 1,深度 d - 1 不存在,则创建一个新的根节点 v,原先的整棵树将作为 v 的左子树。”

这说明当:目标深度为1时,我们的处理方式是这样的 

全部代码 

/**
 * @param {v} val,插入节点携带的值
 * @param {cd} current depth,递归当前深度
 * @param {td} target depth, 目标深度
 * @param {isLeft}  判断原目标深度的节点是在左子树还是右子树
 */
var traversal = function (node, v, cd, td, isLeft) {
  debugger;
  if (cd === td) {
    const newNode = new TreeNode (v);
    // 如果原来是左子树,重置后目标节点还是在左子树上,否则相反
    if (isLeft) {
      newNode.left = node;
    } else {
      newNode.right = node;
    }
    return newNode;
  }
  // 处理上述的第1和第2种情况
  if (node.left || (node.left === null && cd + 1 === td)) {
    node.left = traversal (node.left, v, cd + 1, td, true);
  }
  if (node.right || (node.right === null && cd + 1 === td)) {
    node.right = traversal (node.right, v, cd + 1, td, false);
  }
  return node;
};
/**
 * Definition for a binary tree node.
 * function TreeNode(val) {
 *     this.val = val;
 *     this.left = this.right = null;
 * }
 */
/**
 * @param {TreeNode} root
 * @param {number} v
 * @param {number} d
 * @return {TreeNode}
 */
var addOneRow = function (root, v, td) {
  // 处理目标深度为1的情况,也就是上述的第3种情况
  if (td === 1) {
    const n = new TreeNode (v);
    n.left = root;
    return n;
  }
  traversal (root, v, 1, td);
  return root;
};

单词拆分 

题目描述 

给定一个非空字符串 s 和一个包含非空单词列表的字典 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。

说明:

1.拆分时可以重复使用字典中的单词。

2.你可以假设字典中没有重复的单词。

Example 

example1
输入: s = "applepenapple", wordDict = ["apple", "pen"]
输出: true解释: 返回 true 因为 "applepenapple" 可以被拆分成 "apple pen apple"。
注意: 你可以重复使用字典中的单词。

example2
输入: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
输出: false来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/word-break

基本思想 

动态规划

具体分析

动态规划的关键点是:寻找状态转移方程

有了这个状态转移方程,我们就可以根据上一阶段状态和决策结果,去求出本阶段的状态和结果

然后,就可以从初始值,不断递推求出最终结果。

在这个问题里,我们使用一个一维数组来存放动态规划过程的递推数据

假设这个数组为dp,数组元素都为true或者false,

dp[N] 存放的是字符串s中从0到N截取的子串是否是“可拆分”的布尔值

让我们从一个具体的中间场景出发来思考计算过程

假设我们有

wordDict = ['ab','cd','ef']
s ='abcdef'

并且假设目前我们已经得出了N=1到N=5的情况,而现在需要计算N=6的情况

或者说,我们已经求出了dp[1] 到dp[5]的布尔值,现在需要计算dp[6] = ?

该怎么计算呢?

现在新的字符f被加入到序列“abcde”的后面,如此以来,就新增了以下几种6种需要计算的情况

A序列 + B序列1.abcdef + ""
2.abcde + f3.abcd + ef4.abc + def5.ab + cdef6.a + bcdef
注意:当A可拆且B可拆时,则A+B也是可拆分的

从中我们不难发现两点

1. 当A可拆且B可拆时,则A+B也是可拆分的

2. 这6种情况只要有一种组合序列是可拆分的,abcdef就一定是可拆的,也就得出dp[6] = true了

下面是根据根据已有的dp[1] 到dp[5]的布尔值,动态计算dp[6] 的过程

(注意只要计算到可拆,就可以break循环了)

具体代码

var initDp = function (len) {
  let dp = new Array (len + 1).fill (false);
  return dp;
};
/**
 * @param {string} s
 * @param {string[]} wordDict
 * @return {boolean}
 */
var wordBreak = function (s, wordDict) {
  // 处理空字符串
  if (s === '' && wordDict.indexOf ('') === -1) {
    return false;
  }
  const len = s.length;
  // 默认初始值全部为false
  const dp = initDp (len);
  const a = s.charAt (0);
  // 初始化动态规划的初始值
  dp[0] = wordDict.indexOf (a) === -1 ? false : true;
  dp[1] = wordDict.indexOf (a) === -1 ? false : true;
  // i:end
  // j:start
  for (let i = 1; i < len; i++) {
    for (let j = 0; j <= i; j++) {
      // 序列[0,i] = 序列[0,j] + 序列[j,i]
      // preCanBreak表示序列[0,j]是否是可拆分的
      const preCanBreak = dp[j];
      // 截取序列[j,i]
      const str = s.slice (j, i + 1);
      // curCanBreak表示序列[j,i]是否是可拆分的
      const curCanBreak = wordDict.indexOf (str) !== -1;
      // 情况1: 序列[0,j]和序列[j,i]都可拆分,那么序列[0,i]肯定也是可拆分的
      const flag1 = preCanBreak && curCanBreak;
      // 情况2: 序列[0,i]本身就存在于字典中,所以是可拆分的
      const flag2 = curCanBreak && j === 0;
      if (flag1 || flag2) {
        // 设置bool值,本轮计算结束
        dp[i + 1] = true;
        break;
      }
    }
  }
  // 返回最后结果
  return dp[len];
};

全排列

题目描述

给定一个没有重复数字的序列,返回其所有可能的全排列。

Example

输入: [1,2,3]
输出:
[
  [1,2,3],
  [1,3,2],
  [2,1,3],
  [2,3,1],
  [3,1,2],
  [3,2,1]
]

基本思想

回溯法

具体分析

1. 深度优先搜索搞一波,index在递归中向前推进

2. 当index等于数组长度的时候,结束递归,收集到results中(数组记得要深拷贝哦)

3. 两次数字交换的运用,计算出两种情况

总结

想不通没关系,套路一波就完事了

具体代码

var swap = function (nums, i, j) {
  const temp = nums[i];
  nums[i] = nums[j];
  nums[j] = temp;
};

var recursion = function (nums, results, index) {
  // 剪枝
  if (index >= nums.length) {
    results.push (nums.concat ());
    return;
  }
  // 初始化i为index
  for (let i = index; i < nums.length; i++) {
    // index 和 i交换??
    // 统计交换和没交换的两种情况
    swap (nums, index, i);
    recursion (nums, results, index + 1);
    swap (nums, index, i);
  }
};
/**
 * @param {number[]} nums
 * @return {number[][]}
 */
var permute = function (nums) {
  const results = [];
  recursion (nums, results, 0);
  return results;
};

本文来自 js教程 栏目,欢迎学习!  

以上是JavaScript中二叉树,动态规划和回溯法(案例分析)的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文转载于:cnblogs.com。如有侵权,请联系admin@php.cn删除