搜索
首页Javajava教程Java HashMap透析

Java HashMap透析

Oct 28, 2019 pm 03:35 PM
java

Java HashMap透析

HashMap 是数组和链表组合组成的复杂结构,哈希值决定了键值在数组的位置,当哈希值相同时则以链表形式存储,当链表长度到达设定的阈值则会对其进行树化,这样做是为了保证数据安全和数据相关操作的效率

HashMap 性能表现取决于哈希码的有效性,所以 hashCode 和 equals 的基本约定规则尤为重要,如:equals 相等,hashCode 一定要相等;重写了 hashCode 也要重写 equals;hashCode 需要保持一致性,状态改变返回的哈希值仍然要一致;equals 的对称、反射、传递等特性

java-18.png

HashMap 与 Hashtable、TreeMap 的区别

HashMap:基于数组的非同步哈希表,支持 null 键或值,是键值对存取数据场景的首选

Hashtable:基于数组的同步哈希表,不支持null键或值,因为同步导致性能影响,很少被使用

TreeMap:基于红黑树提供顺序访问的 Map,比 HashMap 节省空间,但它的数据操作(查、增、删)时间复杂度均为:O(log(n)),这点与 HashMap 不同。支持空值,当键为空时且未实现 Comparator 接口,会出现 NullPointerException ,实现了 Comparator 接口并对 null 对象进行判断可实现正常存入

HashMap、Hashtable、TreeMap 均以键值对形式存储或操作数据元素。HashMap、TreeMap 继承自 AbstractMap 类,Hashtable 继承自 Dictionary 类,三者均实现 Map 接口

HashMap 源码解析

HashMap()

public HashMap(int initialCapacity, float loadFactor){  
    // ... 
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}

初始化 HashMap 时仅设置了一些初始值,但在开始处理数据时,如 .put() 方法内渐渐开始复杂起来

HashMap.put()

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
    	// 定义新tab数组及node对象
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        // 如果原table是空的或者未存储任何元素则需要先初始化进行tab的初始化
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        // 当数组中对应位置为null时,将新元素放入数组中
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        // 若对应位置不为空时处理哈希冲突
        else {
            Node<K,V> e; K k;
            // 1 - 普通元素判断: 更新数组中对应位置数据
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            // 2 - 红黑树判断:当p为树的节点时,向树内插入节点
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            // 3 - 链表判断:插入节点
            else {
                for (int binCount = 0; ; ++binCount) {
                	// 找到尾结点并插入
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        // 判断链表长度是否达到树化阈值,达到就对链表进行树化
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    // 更新链表中对应位置数据
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            // 如果存在这个映射就覆盖
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                // 判断是否允许覆盖,并且value是否为空
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                // 回调以允许LinkedHashMap后置操作
                afterNodeAccess(e); 
                return oldValue;
            }
        }
        // 更新修改次数
        ++modCount;
        // 检查数组是否需要进行扩容
        if (++size > threshold)
            resize();
        // 回调以允许LinkedHashMap后置操作
        afterNodeInsertion(evict);
        return null;
    }

当 table 为 null,会通过 resize() 初始化,且 resize() 有两个作用,一是创建并初始化 table ,二是在 table 容量不满足需求时进行扩容:

        if (++size > threshold)
            resize();

具体的键值对存储位置计算方法为:

        if ((p = tab[i = (n - 1) & hash]) == null)
            // 向数组赋值新元素
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            // 如果新插入的结点和table中p结点的hash值,key值相同的话
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            // 如果是红黑树结点的话,进行红黑树插入
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    // 代表这个单链表只有一个头部结点,则直接新建一个结点即可
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        // 链表长度大于8时,将链表转红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    // 及时更新p
                    p = e;
                }
            }
            // 如果存在这个映射就覆盖
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                // 判断是否允许覆盖,并且value是否为空
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);     // 回调以允许LinkedHashMap后置操作
                return oldValue;
            }
        }

留意 .put() 方法中的 hash 计算,它并不是 key 的 hashCode ,而是将 key 的 hashCode 高位数据移位到低位进行异或运算,这样一些计算出来的哈希值主要差异在高位时的数据,就不会因 HashMap 里哈希寻址时被忽略容量以上的高位,那么即可有效避免此类情况下的哈希碰撞

    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

HashMap.resize()

    final Node<K,V>[] resize() {
    	// 把当前底层数组赋值给oldTab,为数据迁移工作做准备
        Node<K,V>[] oldTab = table;
        // 获取当前数组的大小,等于或小于0表示需要初始化数组,大于0表示需要扩容数组
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        // 获取扩容的阈值(容量*负载系数)
        int oldThr = threshold;
        // 定义并初始化新数组长度和目标阈值
        int newCap, newThr = 0;
        // 判断是初始化数组还是扩容,等于或小于0表示需要初始化数组,大于0表示需要扩容数组。若  if(oldCap > 0)=true 表示需扩容而非初始化
        if (oldCap > 0) {
        	// 判断数组长度是否已经是最大,MAXIMUM_CAPACITY =(2^30)
            if (oldCap >= MAXIMUM_CAPACITY) {
            	// 阈值设置为最大
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)            	
            	// 目标阈值扩展2倍,数组长度扩展2倍
                newThr = oldThr << 1; // double threshold
        }
        // 表示需要初始化数组而不是扩容
        else if (oldThr > 0) 
        	// 说明调用的是HashMap的有参构造函数,因为无参构造函数并没有对threshold进行初始化
            newCap = oldThr;
        // 表示需要初始化数组而不是扩容,零初始阈值表示使用默认值
        else {	
        	// 说明调用的是HashMap的无参构造函数
            newCap = DEFAULT_INITIAL_CAPACITY;
            // 计算目标阈值
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        // 当目标阈值为0时需重新计算,公式:容量(newCap)*负载系数(loadFactor)
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        // 根据以上计算结果将阈值更新
        threshold = newThr;
        // 将新数组赋值给底层数组
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        
        // -------------------------------------------------------------------------------------
        // 此时已完成初始化数组或扩容数组,但原数组内的数据并未迁移至新数组(扩容后的数组),之后的代码则是完成原数组向新数组的数据迁移过程
        // -------------------------------------------------------------------------------------
        
        // 判断原数组内是否有存储数据,有的话开始迁移数据
        if (oldTab != null) {
        	// 开始循环迁移数据
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                // 将数组内此下标中的数据赋值给Node类型的变量e,并判断非空
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    // 1 - 普通元素判断:判断数组内此下标中是否只存储了一个元素,是的话表示这是一个普通元素,并开始转移
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    // 2 - 红黑树判断:判断此下标内是否是一颗红黑树,是的话进行数据迁移
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    // 3 -  链表判断:若此下标内包含的数据既不是普通元素又不是红黑树,则它只能是一个链表,进行数据转移
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        // 返回初始化完成或扩容完成的新数组
        return newTab;
    }

容量和负载系数决定了数组容量,空余太多会造成空间浪费,使用太满会影响操作性能

如果能够明确知道 HashMap 将要存取的键值对的数量,可以考虑预先设置合适的容量大小。具体数值我们可以根据扩容发生的条件来做简单预估,根据前面的代码分析,我们知道它需要符合计算条件:负载因子 * 容量 > 元素数量

所以,预先设置的容量需要满足,大于 预估元素数量 / 负载因子,同时它是 2 的幂数

但需要注意的是:

如果没有特别需求,不要轻易进行更改,因为 JDK 自身的默认负载因子是非常符合通用场景的需求的。如果确实需要调整,建议不要设置超过 0.75 的数值,因为会显著增加冲突,降低 HashMap 的性能。如果使用太小的负载因子,按照上面的公式,预设容量值也进行调整,否则可能会导致更加频繁的扩容,增加无谓的开销,本身访问性能也会受影响。

HashMap.get()

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        // 将table赋值给变量tab并判断非空 && tab 的厂部大于0 && 通过位运算得到求模结果确定链表的首节点赋值并判断非空
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
        	// 判断首节点hash值 && 判断key的hash值(地址相同 || equals相等)均为true则表示first即为目标节点直接返回
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            // 若首节点非目标节点,且还有后续节点时,则继续向后寻找
            if ((e = first.next) != null) {
            	// 1 - 树:判断此节点是否为树的节点,是的话遍历树结构查找节点,查找结果可能为null
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                // 2 - 链表:若此节点非树节点,说明它是链表,遍历链表查找节点,查找结果可能为null
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

HashMap 为什么会被树化

为了保证数据安全及相关操作效率

因为在元素放置过程中,如果一个对象哈希冲突,都被放置到同一个桶里,则会形成一个链表,我们知道链表查询是线性的,会严重影响存取的性能

而在现实世界,构造哈希冲突的数据并不是非常复杂的事情,恶意代码就可以利用这些数据大量与服务器端交互,导致服务器端 CPU 大量占用,这就构成了哈希碰撞拒绝服务攻击,国内一线互联网公司就发生过类似攻击事件

以上是Java HashMap透析的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:CSDN。如有侵权,请联系admin@php.cn删除
为什么Java是开发跨平台桌面应用程序的流行选择?为什么Java是开发跨平台桌面应用程序的流行选择?Apr 25, 2025 am 12:23 AM

javaispopularforcross-platformdesktopapplicationsduetoits“ writeonce,runanywhere”哲学。1)itusesbytbytybytecebytecodethatrunsonanyjvm-platform.2)librarieslikeslikeslikeswingingandjavafxhelpcreatenative-lookingenative-lookinguisis.3)

讨论可能需要在Java中编写平台特定代码的情况。讨论可能需要在Java中编写平台特定代码的情况。Apr 25, 2025 am 12:22 AM

在Java中编写平台特定代码的原因包括访问特定操作系统功能、与特定硬件交互和优化性能。1)使用JNA或JNI访问Windows注册表;2)通过JNI与Linux特定硬件驱动程序交互;3)通过JNI使用Metal优化macOS上的游戏性能。尽管如此,编写平台特定代码会影响代码的可移植性、增加复杂性、可能带来性能开销和安全风险。

与平台独立性相关的Java开发的未来趋势是什么?与平台独立性相关的Java开发的未来趋势是什么?Apr 25, 2025 am 12:12 AM

Java将通过云原生应用、多平台部署和跨语言互操作进一步提升平台独立性。1)云原生应用将使用GraalVM和Quarkus提升启动速度。2)Java将扩展到嵌入式设备、移动设备和量子计算机。3)通过GraalVM,Java将与Python、JavaScript等语言无缝集成,增强跨语言互操作性。

Java的强键入如何有助于平台独立性?Java的强键入如何有助于平台独立性?Apr 25, 2025 am 12:11 AM

Java的强类型系统通过类型安全、统一的类型转换和多态性确保了平台独立性。1)类型安全在编译时进行类型检查,避免运行时错误;2)统一的类型转换规则在所有平台上一致;3)多态性和接口机制使代码在不同平台上行为一致。

说明Java本机界面(JNI)如何损害平台独立性。说明Java本机界面(JNI)如何损害平台独立性。Apr 25, 2025 am 12:07 AM

JNI会破坏Java的平台独立性。1)JNI需要特定平台的本地库,2)本地代码需在目标平台编译和链接,3)不同版本的操作系统或JVM可能需要不同的本地库版本,4)本地代码可能引入安全漏洞或导致程序崩溃。

是否有任何威胁或增强Java平台独立性的新兴技术?是否有任何威胁或增强Java平台独立性的新兴技术?Apr 24, 2025 am 12:11 AM

新兴技术对Java的平台独立性既有威胁也有增强。1)云计算和容器化技术如Docker增强了Java的平台独立性,但需要优化以适应不同云环境。2)WebAssembly通过GraalVM编译Java代码,扩展了其平台独立性,但需与其他语言竞争性能。

JVM的实现是什么,它们都提供了相同的平台独立性?JVM的实现是什么,它们都提供了相同的平台独立性?Apr 24, 2025 am 12:10 AM

不同JVM实现都能提供平台独立性,但表现略有不同。1.OracleHotSpot和OpenJDKJVM在平台独立性上表现相似,但OpenJDK可能需额外配置。2.IBMJ9JVM在特定操作系统上表现优化。3.GraalVM支持多语言,需额外配置。4.AzulZingJVM需特定平台调整。

平台独立性如何降低发展成本和时间?平台独立性如何降低发展成本和时间?Apr 24, 2025 am 12:08 AM

平台独立性通过在多种操作系统上运行同一套代码,降低开发成本和缩短开发时间。具体表现为:1.减少开发时间,只需维护一套代码;2.降低维护成本,统一测试流程;3.快速迭代和团队协作,简化部署过程。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。